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Linear Mixed Models (LLMs)
Challenges in traditional GWAS

Standard GWAS uses linear regression:

n individuals p SNPs
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y=XB+¢€  withe~N(0,02I)

Population structure and relatedness introduce false positives
e The modelis missing terms to describe their effect

E.g. Height differences between populations can confound results



Linear Mixed Models (LLMs)

The random effect term

y = @ + + with e~N (0,0%1),
u~N (0,7)
Z lcov. matrix of r.e.

Fixed Polygene Residual
effect or
Random

effect



Linear Mixed Models (LLMs)

The random effect term

How does the r.e. term acts in our model?
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Linear Mixed Models (LLMs)

variances to consider

{ O-phenotype ]

[ Ogenetic O-envirJ

y=Xp+¢€
To include genetic effect
+
other covariates

To include genetic effect y=XB+u+e,

E~
u~N (0,62K ) (genetic effect)

g
u,~N (0,05Q ) (covariates effect)



Linear Mixed Models (LLMs)

In practice - fill in the variables

y=XB+u +tu,+e »y=XpB +u Total covariance

\ matrix

u~N(0,02K + 021 )= N(0,V)

X117 X12 - X1n PGy PCpp
X21 X292 PCZ]_ PCZZ / \
|  Residual environmental
Ykt Xz X Pl Pl effect and noise
N — U\ — _/
n SNPs (normalized) Other covariates
k samples (PCA, ...)

Kinship matrix
(finer relatedness structure)
Easily calculated with plink, GCTA, ...



Linear Mixed Models (LLMs)

In practice - parameters not directly calculated, heritability

Very innocent-looking formula Heritability comes into play
wvIp! 2 2
2, 22 2
u~N (0,02K + 021 ) Ogt+0e Ophenotype

Heritability = variance proportion
explained only by genetic variance.

The fundamental parameter for
phenotype prediction

What about the variances o, o2



Linear Mixed Models (LLMs)

Some approaches

y usually normalized so 033 =1

BOLT-LMM
(Loh et al. 2015)

Optimizes
V= 0/K+o0sl
Through prior on sigma’s.

2 _ 95
Thenuses h“ = =5 to
Oy
define heritability.

Regenie
(Yang etal. 2011)

Does not use K, but
principal components

Shrinks effect of SNPs to
0 to avoid overfitting

Multiple other steps to
avoid overfitting such as
penalties and cross-
validation

Very fast and good for
large studies with >
Millions of SNPs



Linear Mixed Models (LLMs)  [reasmsmemes

l Exact method

Grid-search
Some approaches ST
LOCO FaST-LMM
| FaST-LMM-LOCO | (e—— GEMMA Grid-LMM
- TASSEL-MLM
L MM4LMM )
Gaussian mixture prior P3D l
for marker effects controlling | T
the genetic background FaST—LMM—P3DLOCO} EMMAX
| (GCTA-) MLMA-LOCO dmm— | TASSEL-MLM-P3D
) GAPIT-MLM
BOLT-LMM-mix MC sampling & FaST-LMM-P3D
Approximated _ GCTA-MLMA ) GRAMMAR-Gamma
test statistics

approximation for test fastGWA-ori
statistics
‘parse kinship
fastGWA-sp ‘
GRAMMAR-Gamma

Compressed RES-LR \
kinship matrix
fasTGWA—GG

/ [ BOLT-LMM-inf
" BOLT-LMM

Selecting
Selecting a subset of markers r'r:jac;"k!ars als
to derive the kinship matrix additiona

covariates
| FasT-LMM-Select | MLMM | aam GRAMMAR |
) - TASSEL MLM- C
Grouping the markers i . i

l Using two kinship matrices

into bins, then selectin LOCO & Fitting the null
& to control the genetic l Enrichment s

model by a two-step
sl ] background ECMLM stacked ridge regression
Using LR t0 | Ecvum |
[ FaST-LMM-all+select W

test marker effects
REGENIE
FarmCPU

Using MLR to control
Population structure

A phylogeny of 33 GWAS algorithms. If two algorithms are connected by an arrow, the target is based on the source with additional techniques indicated by the
text If two algorithms target the same algorithm, the target combines the techniques implemented by the two sources. P3D, population parameters previously
determined; MC, Monte-Carlo; LOCO, leave-one-chromosome-out; MLR, multi-variate linear regression; RES-LR, using the residuals from the null model as the
response to test marker effects in a simple linear model. From (Liu et al, 2023, bioArxiv. DOI 10.1101/2023.12.05.570105).

| fastGWA-sp- GG
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Beyond LLMs

New methods

New methods are

Fast on large datasets

Reliable in detecting association
Use mixed models

Have faster implementations

Genomic control P_CA Mixed models

} — Y; = BXi+qPCil+ei Y =BX;+ il + €

From basic Genomics Control (rescaling test
statistics) to correcting through PCA only and
to Mixed Models, of which LMMs are a special
case. Credit lain Mathieson.

Some examples

LDAK-KVIK (Hof and Speed, 2024)
Uses mixed models: often the preferred tool,
are more flexible and can be more complex

than LMMs. Faster and outperforming
REGENIE, BOLT-LMM

Quickdraw (Loya et al, 2025)

Shrinks variant effects to increase association
power, computationally efficient with
variational inference and GPU calculations.

It also uses mixed models.



https://www.medrxiv.org/content/10.1101/2024.07.25.24311005v1
https://doi.org/10.1038/s41588-024-02044-7

Meta studies

Individual genetic variants often have
small effects.

Large sample sizes are required to detect
novel associations.

Low minor allele frequency (MAF)
reduces statistical power.

Combining individual level data is

technically and administratively
challenging (large dataset sizes, variations

in study designs, and data protection
constraints)
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Figure 1 | Effects of allele frequency on sample-size requirements. The numbers of cases
and controls that are required in an association study to detect disease variants with allelic odds
ratios of 1.2 (red), 1.3 (blue), 1.5 (yellow) and 2 (black) are shown. Numbers shown are for a
statistical power of 80% at a significance level of P <10-¢, assuming a multiplicative model for the
effects of alleles and perfect correlative linkage disequlibrium between alleles of test markers and

disease variants.
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Meta studies

GWAS summary statistics are publicly
available:

- Meta-studies integrate those
summary statistics

- Increased statistical power as
sample size increases

Softwares:

- METAL
- GWAMA
- MANTRA

a Data collection

d Imputation
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Meta studies

GWAS summary statistics are publicly
available:

- Meta-studies integrate those
summary statistics

- Increased statistical power as
sample size increases

Softwares:

- METAL
- GWAMA
- MANTRA

Study design and analysis plan

Study selection and dataset collection

v

Standardization, harmonization, and quality
control of the summary statistics

/\.

Meta-analysis using a

Heterogeneity analysis
proper model 8 Y Y

\/

Downstream analysis

Credit: Yunye He




Meta studies

GWAS cohorts

Cohort 1

Across constituent cohorts, inter-cohort
heterogeneity could arise from:

« Genuine biological mechanisms
+ Population-specific variants
+ GxG and GXE interactions
 Phenotyping
- Different diagnosis criteria
- Different proportion of subtypes
« Different measurement protocols
+ Genotyping and imputation
- Different genotyping array
- Different imputation reference panel
: - Different imputation quality
Cohort N * Quality control (QC)

- Different thresholds for MAF,
—— imputation quality, etc.
- GWAS
« Different statistical model and
software

Meta-analysis Fine-mapping

Effect models: Summary statistics-

* Fixed-effect based methods include:
+ Random-effect - ABF
* CAVIAR

Ancestries: * PAINTOR

+ Single-ancestry * FINEMAP

+ Multi-ancestry + SUSIE

.. ®
For each locus @

Typically, both pre- and
post-meta-analysis QC
are applied to summary
statistics * 95% credible sets
(Supplementary Box).

Standard outputs:
+ Posterior inclusion
probability (PIP)

Additional post-fine-map-
ping QC is sometimes
adopted.



Meta-analysis

Approaches
* Fixed Effects

* Most commonly used and most powerful for discovery when assuming
a consistent effect of each risk allele across datasets.

* Inverse variance weighting is the most common method.
« Sample size weighting (z-score based) is also widely used.

 Random Effects

* Lesscommon but useful for assessing the generalizability of
associations.

* Estimates the average effect size and its uncertainty across different
populations.

 Bayesian Approaches (rarely used)



Meta studies

Quality controlis crucial!

Rigorous QC on the individual GWAS results
Exclude rare variants and poorly imputed variants
Control for population stratification and ancestry differences

Verify input data and identify differences (tools: GWAtoolbox,
EasyQC, GWASInspector)

Harmonization of the data (effect allele polarization)
Perform both fixed effects approaches and compare the results

As in GWAS, QQ and Manhattan plots are important.



Quality control
Allele flipping

e Effect allele must be the same across GWAS studies.
 How does it look if the effect direction is not the same?

good allele flips
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Meta-analysis software

Most commonly used software for common variant analysis: METAL

Automatic strand flipping of non-ambiguous SNPs
Calculation of max/min/mean allele frequency
 Inverse variance & sample size weightings
Automatic genomic control correction
Heterogeneity tests

*Link: www.sph.umich.edu/csg/abecasis/metal/

*Documentation: genome.sph.umich.edu/wiki/Metal_Documentation



Meta-analysis example!

e Setup

*Modify files to include:
e allinformation

e consistent marker
name

*Tools: WAtoolbox,
EasyQC, GWASIinspector

Input: Script file

# Execute analysis on 2 studies
# GENOMICCONTROL ON
# SCHEME STDERR

#-- DESCRIBE AND PROCESS 1st FILE --
MARKER SNP

ALLELE REF_ALLELE OTHER_ALLELE
EFFECT BETA

PVALUE PVALUE

WEIGHT N

STDERR SE

PROCESS gwasl.txt.gz

#-- DESCRIBE AND PROCESS 2nd FILE --
MARKER SNP

ALLELE A1 A2

EFFECT EFFECT1

PVALUE pvalue

WEIGHT N

STDERR SE

PROCESS gwas2.txt.gz

OUTFILE META_GWAS1-2
MINWEIGHT 10000
ANALYZE HETEROGENEITY

Running METAL

META_GWAS1-2.TBL.INFO

# This file contains a short description of the columns

# meta-analysis summary file, named 'META_GWAS1-2.TBL’

# Marker - this is the marker name

# Allelel - the first allele for this marker in the first file where it occurs

# Input for this meta-analysis was stored in the files: # --> Input File 1 :

gwasl.txt.gz

#--> Input File 2 : gwas2.txt.gz

META_GWAS1-2.TBL

Allelel

MarkerName
rs560887
rs853787
rs853789
rs853773
rs537183
rs557462
rs502570
rs563694
rs475612
rs853781

t

VD ~+ VYV ~+ + D O o+

Allele2

c

m o o m o o 0g o0m 0

Weight

6806
6806
5339
6806
6806
6806
6806
6806
6806
6806

Zscore
-7.075
6.691
-6.597
-6.132
6.007
6.005
-6.001
5.975
-5.867
-5.844

P-value
1.491*1012
2.221*1011
4,189*1011
8.662*1010
1.887*10°
1.917*%10°
1.955%10°
2.300*10°
4.423*10°
5.092*10°

Direction



JOURNAL ARTICLE

GWASTools: an R/Bioconductor package for quality control and analysis
of genome-wide association studies &

Stephanie M. Gogarten &, Tushar Bhangale, Matthew P. Conomos, Cecelia A. Laurie, Caitlin P. McHugh, lan Painter,
Xiuwen Zheng, David R. Crosslin, David Levine, Thomas Lumley ... Show more
Author Notes

Bioinformatics, Volume 28, Issue 24, December 2012, Pages 3329-3331, https://doi.org/10.1093/bioinformatics/bts610

* Ensures consistency of input file columns

* Compares effect size distributions across cohorts

* Harmonized header and separator across input files

* Calculated effective N and corrects for genomic control
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