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Post-GWAS analysis

After the GWAS (and GWAS meta-analysis), the challenging work begins:

Interpretation of the results

Finding the causal variant (linkage disequilibrium)

Assessing the causal gene or functional mechanism

Pathway enrichment analyses, pleiotropic effects, risk prediction,



GWAS with the
Genomics Sandbox

Today’s topics

GWAS catalog
« Caveats and pitfalls

Polygenic scores
 What are PGS and PRS?
* How to calculate PGS
* Interpreting PGS
» Portability of PGS
« (Caveats and pitfalls



Over the past 5 years, the average sample size per publication
is >x3, increasing the number of significant associations
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Over 650k GWAS-significant variants!!

85 000 full genome-wide summary statistics datasets available for downstream analysis (e

meta-analysis, PRS...).

data:
Variant and P- A
risk allele value RAF OR
1s2075650-G 1x10%5 014 2.53
Home / Documentation

& Curation of

population descriptors

A description of our data extraction
and standardisation process.

b Diversity analysis
Distribution of ancestry labels in the
GWAS Catalog.

Nucleic Acids Res, Volume 53, Issue D1, 6 January 2025, Pages D998-D1005,
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Example of GWAS Catalog for lung cancer
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UK Biobank contribution to the ancestry in the GWAS catalog
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UK Biobank contribution to the ancestry in the GWAS catalog
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European genomic data won’t represent all human genomic differences

Immune system disease

Inflammatory marker
measurement

Other disease




Prediction accuracy relative to European-ancestry individuals

1.00 - as

©

~J

18]
|

O

N

U1
|

Prediction accuracy
(relative to Europeans)
-

n
o

0.00 -

Population Martin et al. 2019 < I X



PRS are not portable across global populations

Base GWAS:
Europeans

How would
Africans look
compared to
Europeans if
these scores
were accurate?
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Effect sizes of GWAS variants are (mostly) small
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Some exceptions...

A common Greenlandic TBC1D4 variant confers insulin
resistance and type 2 diabetes
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Some exceptions...

A common Greenlandic TBC1D4 variant confers insulin

resistance and type 2 diabetes
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What is a polygenic risk score (PGS)?

Many variants across the genome affecting a trait, each with a small effect

Pooling information across all significant variants to derive a composite
predictor

Genome-based predictor about the overall risk of having a disease, or the
genetic value for continuous traits.
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Problem: SNPs are not independent
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How are polygenic scores calculated?

Naive methods: a priori filter SNPs so that the ones included in the model
are approximately independent while only using significantly associated
(e.g. genome-wide significant)

Bayesian methods: explicitly account for the linkage disequilibrium (LD)
across the genome by using a prior on the effect sizes that depends on
the LD surrounding a SNP. They take into account the underlying genetic
structure.

Penalized regression methods: use all SNPs in the genome, but it penalize
large regression coefficients for many SNPs; learning a ”sparse” model
where only some SNPs contribute to the trait



Standard method
Clumping and thresholding

Consider only SNPs with P-value < cutoff

Among SNPs in LD (LD > r2), choose the one with the smaller P-value

« This process “clumps” significant SNPs with each other and picks the most
sifgnificant

« R2 alone determines whether 2 SNPs have independent signals

Use marginal allelic effect estimated in PRS calculation

To optimise performance you can tune the cutoff and the r2



Adjusting effect sizes can increase PRS accuracy using LD
information from a external reference panel

LDpred
(Vilhjalmsson et al. AJHG 97:576-592)
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LDpred
(Vilhjalmsson et al. AJHG 97:576-592)

h? .
N (O’p_e) with prob. 0
0,with prob.1 — 6

- Given marginal GWAS effect estimates £ = (5,) and their SEs, LDpred
computes the posterior expectation of the causal effects E(1 | 3, R, h?,6),
where R is the LD matrix

* |In practice, the LD matrix is only considered within a predefined window

 The heritability estimate (h?) can be obtained externally using methods such as linear
mixed models (LMM) or linkage disequilibrium score regression (LDSC)

« Agrid 6 values is evaluated to identify the best-performing model

* The estimated causal effects are then used as weights in PRS I



Prediction accuracy of six polygenic prediction methods in the
Partners HealthCare Biobank
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Prediction accuracy of six polygenic prediction methods in the
Partners HealthCare Biobank
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Recap

BASE DATA
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PROCESSING ‘ DATA

Quality Control

. Both data sets QC’ed as standard in GWAS
. Some QC requires special care in PRS eg. sample overlap, relatedness,

population structure (see Section 2)
NG Retain set of SNPs that overlap between base and target data

. Summary statistics . Individual-level genotype and
. Betas/ORs weights in PRS phenotype data

\ calculation e Often small sample size

/

PRS CALCULATION

VALIDATE { TEST
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* *
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Generate PRS
+

¥
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Perform Association Testing

Out-of-sample PRS testing

* K-fold cross-validation
» Test in data separate from base/target

Nat Protoc. 2020 Jul 24;15(9):2759-2772. doi: 10.1038/s41596-020-0353-1
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How accurate are polygenic risk scores?

« Heritability of the trait (variance attributed to genetic differences)

* What aspect of the trait are we trying to predict? (onset, different
subtypes, severity...)

 Who are we predicting the trait on? (differences in genetic
architecture such AF or LD patterns)

 The power of the base GWAS (quality + size)

 The power of the method used to build the score (how well it
accounts for the complexity of the trait)



What if we applied PRS to “populations”?

Effect size of SNP “|” on trait

: Allele at
L i ,~°associated-SNP “|”



How are polygenic scores constructed?

1000 Genomes Project Phase 3 allele frequencies

ALL AMR EAS
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SAS
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How are polygenic scores constructed?

Effect size from trait-associated
SNPs -estimates from UK Biobank

Berg et al. 2014 i



How are polygenic scores constructed?
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Height PGS using another GWAS cohort
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GWAS6-PRSAnalysis.ipynb

AN

~ 25 min

Compute PRS scores using PRSice
for binary trait.

# PRSice-2

B Home

QUICK START
PRSice
PRSet

DETAIL GUIDES
PRSice
PRSet

Available Commands

DEVELOPERS

Compile from Source

Development Decisions

Choose the Bash kernel

PRSice-2: Polygenic Risk Score software

PRSice (pronounced 'precise’) is a Polygenic Risk Score software for calculating,
applying, evaluating and plotting the results of polygenic risk scores (PRS)
analyses. Some of the features include:

1. High-resolution scoring (PRS calculated across a large number of P-value
thresholds)

Identify Most predictive PRS

Empirical P-values output (not subject to over-fitting)

Genotyped (PLINK binary) and imputed (Oxford bgen v1.2) data input
Biobank-scale genotyped data can be analysed within hours

Incorporation of covariates

Application across multiple target traits simultaneously

Results plotted in several formats (bar plots, high-res plots, quantile plots)
PRSet: function for calculating PRS across user-defined pathways / gene sets

©COENOGOAON

Executable downloads

Choose the R-GWAS kernel



Solutions

« Problems/Issues/Comments?



Choosing threshold

Choosing the optimal
threshold will really
influence the
performance of the PRs
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(Future) Application of PRS in precision medicine

From birth:
Risk prediction

Early symptomes,
prodromal phase
Prevention:
Lifestyle change
Screening programs

To support Prognosis:

diagnosis prediction of
Treatment disease course
decision-making and outcome

To best treat X person?

DOI: 10.1186/s13073-020-00742-5
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Provides the SNP weights of thousands of published PGS in a
standardized format

’_A\‘ PGS Catalog | Home | Browse ¥ | Downloads ¥ | Documentation ~
U )

(2 Latest rel : Feb. 4, 2025

The Polygenic Score (PGS) Catalog

An open database of polygenic scores and the relevant metadata required for accurate application and evaluation.

[ Search the PGS Catalog n

Examples: breast cancer, glaucoma, BMI, EFO_0001645

84 Available tool: pgsc_calc

A reproducible workflow to calculate both PGS Catalog and custom polygenic scores. > See more information

Explore the Data

In the current PGS Catalog you can browse the scores and metadata through the following categories:

Polygenic Scores Traits Publications

¥ 5,053 P 656 M 692

‘ & Submit a PGS ‘




Applications of PRS in population genomics

How did evolution shape genetic variation?

To what extent are phenotypic differences among human populations
driven by natural selection?

" N



Applications of PRS in population genomics

What if we used GWAS variants to test for natural selection?

gy o MM

High polygenic scores

o fitth ,

Low polygenic scores




Polygenic adaptation

e Neutral variant

Haplotype _ _
® Trait increasing variants Recombination,
e Trait decreasing variant Selection drift, mutation

Hard sweep

Polygenic
selection
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Polygenic adaptation

We consider the vector of allele frequencies for GWAS-significant SNPs as a
test statistic and evaluate whether these frequencies show greater
divergence in other populations than expected under genetic drift alone

Key assumption: The GWAS used to construct the polygenic score must
have adequately accounted for population stratification (we will revisit
this point later).



Can we measure the scores overdispersion among populations?

Significant measure of
overdispersion ->
evidence for polygenic
adaption on height

Polygenic height score

Modern Europe

TSI IBS GBR CEU

) GIANT | UKB



Evidence was not so strong

Not significant
measure of
overdispersion

Polygenic height score

wnile
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What went wrong?

association of interest

Genotype > Trait

association association

Ancestry

Example: propensity to drink Carlsberg beer and alleles that happen to be
at high frequency in Danes i



Source of variation

[\

population population Unequal
mean structure relatedness
’ + , , L
Y=u+ SNP + Q(or PCs) + Kinship +e
V4 / / ! N\
(observation) (Fixed effect)  (Fixed effect) (Random effect) (Error)

General linear model (GLM)

Mixed linear model (MLM)

On an individual SNP basis, this is likely OK. However, this was not enough to
correct for subtle biases that accumulate in polygenic scores

Fig. adapted from “Components of mixed linear model” (Yu et al. 2006) v


https://link.springer.com/article/10.1007/s10142-024-01477-x

Other caveats

« Even if we find evidence for selection at trait-associated SNPs, it
doesn’t mean we have found the true trait under selection.

« Even if we find evidence for selection, it doesn’t necessarily mean
there are phenotypic differences between populations in that trait:
genetic compensation, environmental effects, etc.

* Unclear how differences in effect sizes and LD across populations
may affect inference

* Major effect alleles may be different across populations



Post-GWAS analysis

Recommendation for human studies:

- Have a look at this tutorial: https://github.com/AngelaMinaVargas/eMAGMA-
tutorial to conduct eQTL informed gene-based tests by assigning SNPs to

tissue-specific eGenes

JOURNAL ARTICLE

E-MAGMA: an eQTL-informed method to identify risk genes using genome-
wide association study summary statistics @

Zachary F Gerring ™, Angela Mina-Vargas, Eric R Gamazon, Eske M Derks

Bioinformatics, Volume 37, Issue 16, August 2021, Pages 2245-2249, https://doi.org/10.1093/bioinformatics/btab115
Published: 24 February2021  Article history v
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Compute PRS scores using PRSice
for quantitative trait.
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PRSice-2: Polygenic Risk Score software

PRSice (pronounced 'precise’) is a Polygenic Risk Score software for calculating,
applying, evaluating and plotting the results of polygenic risk scores (PRS)
analyses. Some of the features include:

1. High-resolution scoring (PRS calculated across a large number of P-value
thresholds)

Identify Most predictive PRS

Empirical P-values output (not subject to over-fitting)

Genotyped (PLINK binary) and imputed (Oxford bgen v1.2) data input
Biobank-scale genotyped data can be analysed within hours

Incorporation of covariates

Application across multiple target traits simultaneously

Results plotted in several formats (bar plots, high-res plots, quantile plots)
PRSet: function for calculating PRS across user-defined pathways / gene sets
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Choose the R-GWAS kernel



Solutions

« Problems/Issues/Comments?

65% correlation between actual and predicted height

Males
© Females

g -

o

3
x
2 o
o K~ -
£ -
s
g
<

o

8

o

3

2 oo
o 2000 Individuals
T T T T T
150 160 170 180 190

Predicted Height (cm)

Lello et al. 2018



Wrap-up
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