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Types of association testing

Assessing the results:

Make sure things went okay
Identify associated SNPs.



GWAS with the Today’s topics

Genomics Sandbox
Association tests

o Single SNP tests
o Case-control (logistic model)
o Quantitative traits (linear model)
o GWAS
* Imputation
* Interpreting GWAS results
« Effect sizes & P-values thresholds

* Visualization

* Tools



Single SNP tests

Test to identify a genetic variant
that affect a trait

Evidence from previous studies
Monogenic traits
Example: PCSK9

GWAS

Scan the genome for variants that
affect a given trait

> 500,000 SNPS (no prior evidence
required)

Likely not to have the casual SNP
Polygenic traits
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Single-SNP tests
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Association testing

How do we test if a genetic variant potentially has an effect on a disease?

ldea: Statistical test to evaluate the
association between the variant and
disease status (e.g. case/control)

If the variant affects the trait, we expect
differences in disease frequencies across
genotypes (variant B)

Genotype AA are less likely to have the
disease

Disease frequency

0.20

0.15 —

0.10

0.05 —

0.00 —

AB

Genotype

BB




Association testing

How do we test if a genetic variant potentially has an effect on a disease?

0.20

ldea: Statistical test to evaluate the
association between the variant and 0.15 -
disease status (e.g. case/control)

If the variant affects the trait, we expect
differences in disease frequencies across
genotypes

0.10

Disease frequency

0.05 —

Approach: test null hypothesis, H,,
of no association between the

variant and disease (i.e., they are - " . 8
independent) Genatype




Association testing

Probability of disease given phenotype:

- P(D
- P(D
- P(D

We can model the probability of disease

0.20

AA) = 0.07,
AB) = 0.13,
BB) = 0.20

£ 0.10

of an individual

0.05 —

P(D|g)

0.00 —

AB

enotype
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Testing for association between disease and genotype

We can use a logistic regression model
p
log <E> = Po +PapXsn + PeBXBE
where . are regression coefficients (effect sizes),

and the x. are determined by the genotype of an individual
Xy

AA 0
AB
BB 0

We can rephrase the logistic regression model into a probability

D = exp(Bo +Lap Xap + BepXpB)
1+ exp(Bo +Bap Xap + BepXpp)




Example

What is the probability of disease for the different genotypes?

X, X g
exp(Bo +Pap Xap + BepXpR) AA 0 ] 0

p —
1+ exp(Bo +Bap Xap + BepXpB) AB
BB 0

For an individual with genotype AA?

For an individual with genotype AB?



Example

What is the probability of disease for the different genotypes?

D = exp(Bo +Pap Xap + BeeXpB) 0 = 0 =
1+ exp(Bo +Bas Xap + BeXBB) ’SE o
For an individual with genotype AA?
exp(fo )
POAD = T e (o)
For an individual with genotype AB?
exp(Bo +LaB)

p(DIAB) = 1+ exp(Bo +Bar) SN



Association tests (full genotype model)

p = exp(Bo +Bap Xap + BeXsE)
1+ exp(Bo +Pap Xap + BesXpp)

If there is no association, then the probability of disease is the same
regardless of the genotype p(D|AB) = p(D|AA) = p(D|BB)

The logistic regression null model is

log (ﬁ) = Po, assuming S5 = Bpp = 0.

The likelihood ratio test (LRT) compares the likelihood of the data under
these two models (2 df) (e.g. ANOVA test in R) I



Simpler logistic regression models

Assuming recessive, dominant or additive genetic effects...

. AA 0 AA 0
Dominant iti
AB 1 Additive N
BB 1 BB 2




Model assumptions, degrees of freedom and power

Which single-SNP test is the most appropriate to use?

 If a sub-model is correctly specified, a test with fewer degrees of
freedom has greater power than the full genotype test (avoids unnecessary

parameters).

* However, if the model is severely miss-specified, the test may lose
power.

« Aslightly miss-specified model with fewer degrees of freedom can still
outperform a fully correct test with more degrees of freedom in terms
of power (avoids fitting noise or random fluctuations in the data).



Generalised logistic model

p
log <m) = o +P1x1 + -+ Pnxn

« The regression coefficients, (s represent the effect sizes while xs are covariates

« Additional covariates, both discrete and continuous, can be included to adjust the model
for confounding factors such as sex, population structure, or batch effect.

The design matrix consists of columns, xs, which for single-SNPs:

Genotypes | Additive | Dominant | Recessive | _Full _
X4 Xp Xp

Xap Xpp
AA 0 0 1 0 0
AB 1 0 0 1 0
BB 0 1 0 0 1

Different nested models can be compared using ANOVA.



Effect sizes - odds ratio

How many times higher the odds of disease _

. . . Exposed (aa)
are for expc?seq ]nd1v1duals compared to Not exposed (MorAa) 400 3600
unexposed individuals?

P(Case|Exposed) 100/200
OR _ ODDExposed _ P(Controll|Exposed)  100/200 __ 9
— —  P(Case|Notexposed) ~ 400/4000 —

ODD
Not exposed P(Control|Not exposed)  3600/4000

The definition of "exposed" depends on the model. For example, in a recessive
model, an individual is considered exposed if their genotype is aa. I

N~



Odds ratio from the logistic regression

For example, in the dominant model

log (1P+p> = Bo +Bpxp

where S, is the effect size

The OR from the model is

PaB/BB
OR = ODDpp/pg 1 —PaB/pp
ODDAA Paa -

1 — paa

exp(Bo + Bop) _

AA 0
AB
BB 1

exp(Bo)

exp(Bp)



Single-SNP tests
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Disease traits Quantitative traits
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If a variant is associated with a trait, we would expect different
trait distributions:
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Density

0.015}

0.010

0.005

0.000 20 40 60 80 100 I
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Linear regression

Genotype of individual i
E(Q) = Bo+P1 %1+ + Bnxy
effect size

For a simple additive inheritance model we have

E — + B, x, — x4 isthe# copies of
0) = Fo+ Faa the variant (0,1 or 2)

Test if B4 = 0 (no association between the variant and the trait)



Linear model example 1

SNP ID #1
®
(0
y= (o]
(3] (0]
_5
25 ®
4. (o] (0]
GE) (o] (o]
o) BA=O
®
(o] (o] (0]
(o] (o] (0]
(0] (o] (0]
0 1 2 I

# copies of allele N



Linear model example 2

BMI
measurement

SNP ID #2

ﬁ Does having more
copies of allele #2
equate to a
significant linear
incease in BMI?

# copies of allele



Limitations

Other loci are highly correlated (LD) with the causal variant -> also
“associated” with the trait

[

Causal Genotyped
SNP SNP

All association tests assume that individuals are independent (unrelated)

and from an homogenous (unstructured) population -> any violation can
lead to false positive

QC and appropriate modelling is key!



Power of the associations tests

Will your study answer your research question? Key: power

- # of samples
- Test of choice (linear regression, mixed models...)
- Inheritance model (e.g. recessive)

- Effect sizes (strength of association, the larger the higher)

- Significance level or rejection criteria (e.g. < < 0.05)
In GWAS, multiple testing

- Allele frequencies (MAF > 5%)
- Phenotypic variance explained (R"2) -> complex traits

S

The lower the
alpha, the larger
the sample size
required to
maintain power.



How do we test if a genetic variant potentially has an effect on
a disease?

Single SNP tests
Test to identify a genetic variant
that affect a trait

Evidence from previous studies
Monogenic traits

~

GWAS

Scan the genome for variants that
affect a given trait

> 500,000 SNPS (no prior evidence
required)

Likely not to have the casual SNP
Polygenic traits

Causality Association

LD



Software

Beagle
SHAPEIT
IMPUTES
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Imputation
NGS

Statistical inference of
missing sites based on
haplotype similarity

?: missing sites VF~

n
Q
o
by
S
=
C
XL

Extensive reference panels
(e.g.1000 Genomes Project with > 2,500 genomes)

(large) Reference panel

CCAGATCTCCTTCTTCTGTGC

CGAGATCTCCCGACCTCATGG

CGGAGCTCTTTTCTTCTGTGC

CGAGACTCTCCGACCTTATGGC

TGAGATCTCCCGCCCTCATGG

CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC

CGAAGCTCTTTTCTTCTGTGC
TGAGACCTCCCGCCCTCATGG

CGAGATCTCCTGACCTTGTGC

CGAGACTCTTTTCCTTTGTAC

CCAAGTTCTTCTCTTCTGTGC

~

Study sample (SNP array)

Study sample (low coverage)

¢ Imputation

Study sample (imputed)

¢ Imputation

Study sample (imputed)

CGAGATCTCCCGACCTCATGG

CGAAGCTCTTTTCTTTCATGG

CGAGATCTCCCGACCTCATGG

CGAAGCTCTTTTCTTTCATGG

https://odelaneau.github.io/GLIMPSE/glimpsel/overview.html




Why imputation in GWAS?

* To allow comparison across GWAS studies
* To perform meta-analysis with other samples on other chips
« To fine map - i.e. run association at variants we have not genotyped

« To improve call rate - i.e. increase the number of variants available for
poorly genotyped samples (not ideal)

SNP

DNA =

= array system A

array system B

recombination hotspots

- reference panel



Association testing

. Generalized linear models

More complex models try to

- Penalized multiple regressions take care of the limitations
GWAS studies might have

- Bayesian methods

How can we interpret GWAS results?
What is the strength and reliability of the associations in our GWAS results?



-log, (P value)
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Genomic position (bp)

Which are the
causal variants?

Fine-mapping

In which cell types
do the variants act?

SNP enrichment

Which genes are regulated
by the variants?

Colocalization
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https://doi.org/10.3389/fgene.2020.00424

Which variant has
the highest
association?

Are they all in high-
LD? (beta and p-
value very similar)

Variable levels of
regulatory activity
across cell types

Genes within the
associated locus

!
N~


https://doi.org/10.3389/fgene.2020.00424

Effect sizes
Strength of association

Odds Ratio Beta
Binary traits Quantitative traits
« OR =1 — No effect on the trait. Change in the trait value per
« OR > 1 — The allele increases the additional copy of the allele.
odds of having the trait. * B >0 — The allele increases the
« OR <1 — The allele decreases the  trait value.
odds of having the trait. * B <0 — The allele decreases the
OR = exp(By) trait value.

E.g.: An OR of 1.12 means we will expect to see
a 12% increase in the odds of having Parkinson’s
disease for a one unit increase in allele copy. Iy



Effect size, what can we detect?
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https://doi.org/10.1371/journal.pcbi.1002822

Manhattan plots: p-values
Significance of the association

Useful to visualize our GWAS results and
identify potentially associated regions

—log10 P-value

The height of the spike
represents the strength
of the association with
the phenotype
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What are the consequences of poor quality control?

We would expect association study results to indicate very few
associations between SNPS a specific trait!

-log1(P)
N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17181920

chromosome



Multiple testing and p-values
Significance of the association

« Common threshold for a single test (a« = 0.05)

* In the plot: -log(0.05) = 1.3
« >100,000 tests = Inflation of false positives

a = 0.05

—log10 P-value
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Multiple testing and p-values
Significance of the association

 Common threshold for a single test (o« = 0.05)
« >100000 tests - Inflation of false positives
- We need deflation of p-value

How do we avoid false discovery?

Multiple test adjustments

a
#tests

- Permutations: multiple tests with subsets of data

- Bonferroni correction: a,,,, =



Multiple testing and p-values
Significance of the association

Bonferroni correction
Approx. 1 million independent tests: P < 5x10-8 “genome-wide”
significance

a = 0.05

—log10 P-value
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QQ-plot

Significance of the association

How likely the observed association is to be real?

Let’s look at some examples...



'!’ GENOME-WIDE ASSOCIATION MAP

1

What do we

<« Significant threshold
expect to see?

MMWWMMMM w.  Afew SNPs over

7 8 9 10 11 12 13 141516171819 X . o po
the significant

G Q-Q PLOT threshold.

log p-values
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Most are not associated 9
. 8
with the phenotype g5
:6
A few show stronger ) 4
signals than expected at 3 o
the tail 42
O 1} > ol Observed + 1
0 e Expected
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Expected log10 quantile
Expected distribution of p-values in a typical (A) Manhattan plot, (B) cumulative p-value distribution, and

(C) Q-Q plot. Circles in (B) and (C) denote where the median p-value (red line) falls on the graph in

comparison to the expected median p-value (yellow line). Here, the median falls close to 0.5, suggesting that I
population structure is not affecting association results or has been corrected for in the model. Q-Q, quantile-

quantile. https://doi.org/10.1371/journal.pgen.1007309.g004 )



https://doi.org/10.1371/journal.pgen.1007309.g004

!’ GENOME-WIDE ASSOCIATION MAP

<« Significant threshold

—_

log p-values
ONPAPOOOOOO

4 5 6 7 8 9 1011 1213 141516171819 X

!’ Q-Q PLOT

6
Extreme amount of SNPs ¢
£ crossing this line (50% Z.l
¢ showing “significant =
f . . 1) i
: association ) 3,
c £,
0 O Exp;c::esc:_ Log-
0

1 2 3 4 5
Expected log10 quantile transformed

Observed distribution in a (A) Manhattan plot, (B) cumulative p-value distribution, and (C) Q-Q plot. Circles
in (B) and (C) indicate where the median p-value falls on the plot compared to where it is expected. Here, there
is a substantial deviation between the red and yellow lines due to inflation of false positive associations for I
the body weight phenotype. Q-Q, quantile-quantile._https://doi.org/10.1371/journal.pgen.1007309.g005 v



https://doi.org/10.1371/journal.pgen.1007309.g005

€) - 30 min

« Linear regression models using
PLINK

« Correcting for multiple testing

GWASb5-AssociationTesting.ipynb

o . ..
. « Visualization:
e Manhattan

e Q-Qplots

Choose the Bash kernel * \ Choose the R-GWAS kernel




Solutions

« Problems/Issues/Comments?



Comparing two GWAS approaches
Which model is more appropriate in GWAS?

Manhattan plot: logistic Manhattan plot: assoc

—logio(p)
—logso(p)

1 2 3 4 56 7 8 9 11 13 16 19 1 2 3 4 56789 11 13 16 19

Chromosome Chromosome

Are we being too conservative? What might more extreme p-
values in GWAS indicate?



Comparing two GWAS approaches
Which model is more appropriate in GWAS?

Manhattan plot: assoc

Manhattan plot: logistic
6 —_

—logso(p)

—logio(p)

1 13 16 19

1 2 3 4 5 6 7 8 9

Chromosome

11 13 16 19

2 3 4 5 6 7 8 9

1
Chromosome

Stringent adjustments could More extreme p-values might
lead to higher false negatives indicate inflation due to
confounding!



Q-Qplots

This is what we would expect before and after adjusting for population
structure...

without ancestry PC correction with ancestry PC correction
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courtesy of Toby Johnson

We might not have enough power



GWAS software

e PLINK

(-) limited flexibility on imputed data using allele dosage information (no hard calls)
e« BOLT-LMM

(+) accounts for relatedness, very fast for large datasets

(-) linear regression only, genotyped and imputed data required (two-step approach)
» Regenie

(+) accounts for population structure and relatedness (on most cases), rare variant analysis possible, very
fast for large datasets, analysis of multiple traits at once

(-) two-step analysis
e Quicktest
(+) very fast, can calculate GxE effects
(-) not accounting for relatedness
e SAIGE
(+) accounts for relatedness, very fast for large datasets, rare variant analysis possible (gene-based tests)
» Raremetalworker
(+) accounts for relatedness, rare variant analysis possible
(-) linear regression only, requires specific software for meta-analysis (Raremetal) I




GWAS software Links

e PLINK
e https://www.cog-genomics.org/plink/1.9/ (v1.9)
e https://www.cog-genomics.org/plink/2.0/ (v2.0)
e Quicktest
e https://wp.unil.ch/sgg/program/quicktest/
e BOLT-LMM
 https://www.hsph.harvard.edu/alkes-price/software/
e SAIGE
e https://github.com/weizhouUMICH/SAIGE
e Raremetalworker
e https://genome.sph.umich.edu/wiki/RAREMETALWORKER
e Regenie
e https://rgcgithub.github.io/regenie/



Additional important validations?

. Are there signs of something being wrong?
. Consequences of bad QC in downstream analysis
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Polygenic scores discordance when using effect sizes from different cohorts
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Polygenic scores discordance when using effect sizes from different cohorts
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= All association tests assume independent samples—has this
assumption been violated?

= |s the accuracy of the scores influenced by the ancestry of the GWAS
panel?

More on the lack of transferability in the next lecture
= Was rigorous quality control (QC) performed?
= |s there any overlap between the GWAS panel and the target sample?

» Since accuracy depends on the P-value threshold, did we test
multiple thresholds and select the optimal one?

Are the differences driven by population stratification?



PCA on European individuals
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PCA on European individuals
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Population structure along PCA axes

Effect sizes (8) GIANT
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Sohail et al. 2019
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Effect sizes (8) GIANT
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Population structure along PCA axes
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Population stratification reduced
using large-scale datasets with
relatively homogeneous ancestries

Effect sizes (8) UK Biobank
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Analysis inspired by Sohail et al. 2019
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Adjusting effect sizes can increase PRS accuracy using LD
information from a external reference panel

LDpred
(Vilhjalmsson et al. AJHG 97:576-592)



@ ~ 15 min

« Visualize potential residual
population stratification in the
discovery GWAS

GWAS5SDb-PopulationStratification.ipynb

Why is important? This will have an
effect on your downstream analysis.

Choose the Bash kernel * \ Choose the R-GWAS kernel




Solutions

« Problems/Issues/Comments?



Solutions
Comparing two GWAS approaches

Which model is more appropriate in GWAS?

Manhattan plot: logistic Manhattan plot: assoc
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What else can we do? Run a linear mixed model!



LMM and

meta-
analysis
Health Data Science
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GWAS with the Today’s topics
Genomics Sandbox Association tests

o GWAS
* Linear mixed models
 Tools

o Meta-analysis




Linear Mixed Models (LLMs)
Challenges in traditional GWAS

Standard GWAS uses linear regression:

n individuals . PSNPs
Y1 / X11 le
_| )2 _
Y=1:1 =\ :
' v/ X \an

y =XB + ¢, with e~N (0,a41)

Population structure and relatedness introduce false positives

« The model is missing terms to describe their effect

\

o)

B1
B2

E.g. Height differences between populations can confound results



Linear Mixed Models (LLMs)

The random effect term

y = @ . + with e~N (0,a21),
u~N (0,7)
Z cov. matrix of r.e.

Fixed Polygene Residual
effect or
Random
effect



Linear Mixed Models (LLMs)

The random effect term

How does the r.e. term acts in our model?

T —
o Swsafeedbyy
< rataffcted by u 5P




Linear Mixed Models (LLMs)

variances to consider
O-p henotype

y=Xp+e

To include genetic effect
+

other covariates

To include genetic effect

e~N (0,021) (residual env. effect)

~ 2 i
u~N (0,07K ) (genetic effect) e~N (0,041) (residual env. effect)

u;~N (0,02K ) (genetic effect)
u,~N (0,05Q ) (covariates effect)



Linear Mixed Models (LLMs)

In practice - fill in the variables

y = X:B t+u tu, +e€ »y= X’ﬁ’ +u Total covariance

\ matrix

u~N(0,02K + 21 )= N(0,V)

X117 X12 - X1n PGy PCpp
X21 X292 PCZ]_ PCZZ / \
|  Residual environmental
Ykt Xz X Pl Pl effect and noise
N — U\ — _/
n SNPs (normalized) Other covariates
k samples (PCA, ...)

Kinship matrix
(finer relatedness structure)
Easily calculated with plink, GCTA, ...



Linear Mixed Models (LLMs)

In practice - parameters not directly calculated, heritability

Very innocent-looking formula Heritability comes into play
y=XpB"+u P2 0_5 _ 05
u~N (0, 0'gzK + 0'321) 0'5+0'g O';henotype

Heritability = variance proportion
explained only by genetic
variance.

The fundamental parameter for
phenotype prediction

K A ﬁ:ﬁhﬁ%ﬁ \';'N[Uﬁ- ﬂa

What about the variances o7, o



Linear Mixed Models (LLMs)

Some approaches

y usually normalized so
op =1

BOLT-LMM
(Loh et al. 2015)

Optimizes
V= 0/K+o0sl
Through prior on sigma’s.

2 _ 95
Thenuses h“ = =5 to
Oy
define heritability.

Regenie
(Yang et al. 2011)

Does not use K, but
principal components

Shrinks effect of SNPs to
0 to avoid overfitting

Multiple other steps to
avoid overfitting such as
penalties and cross-
validation

Very fast and good for
large studies with >
Millions of SNPs



Linear Mixed Models (LLMs)  Cmeawirmeins

l Exact method Grid-search
Some approaches

OEMMA )
LOCO FaST-LMM

FaST-LMM-LOCO | ‘e | GEMMA m

. 4 \
the genetic background FaST-LMM-P3D-LOCO EMMAX
| (GCTA-) MLMA-LOCO dmm— | TASSEL-MLM-P3D

. GAPIT-MLM
BOLT-LMM-mix MC sampling &l

FaST-LMM-P3D
. GCTA-MLMA GRAMMAR-Gamma

approximation for test fastGWA-ori
statistics

TASSEL-MLM
_ MMALMM
Gaussian mixture prior P3D l
for marker effects controlling
P3D

Approximated
test statistics
/ BOLT-LMM-inf
( BOLT-LMM

Selecting

‘parse kinship
fastGWA-sp
GRAMMAR-Gamma

Selecting a subset of markers markers as Epmﬁressetd_ RES-LR
to derive the kinship matrix addltlf)nal inship matrix R
covariates fastGWA-GG
| FasT-LMM-Select MLMM e GRAMMAR |
) - O TASSEL-MLM-C
Grouping the markers l Using two kinshi i
. . . sing two kinship matrices - —_——
into bins, then selecting to control the genetic l Enrichment LOCO & Fitting the null | fastGWA-sp-GG
SUPER I background model by a two-step

stacked ridge regression
Using MLR to
test marker effects l [ FaST-LMM-all+select W
e =3
FarmCPU

Using MLR to control l

Population structure

A phylogeny of 33 GWAS algorithms. If two algorithms are connected by an arrow, the target is based on the source with additional techniques indicated by the
text If two algorithms target the same algorithm, the target combines the techniques implemented by the two sources. P3D, population parameters previously
determined; MC, Monte-Carlo; LOCO, leave-one-chromosome-out; MLR, multi-variate linear regression; RES-LR, using the residuals from the null model as the
response to test marker effects in a simple linear model. From (Liu et al, 2023, bioArxiv. DOI 10.1101/2023.12.05.570105).



Beyond LLMs

New methods

New methods are

- Fast on large datasets

- Reliable in detecting association
- Use mixed models

- Have faster implementations

Genomic control P‘CA Mixed models

]
J
a
'
|

) Yi = BXi+ 4PCi +€¢;  Yi=BXi+ mi +e

From basic Genomics Control (rescaling test
statistics) to correcting through PCA only and
to Mixed Models, of which LMMs are a special
case. Credit lain Mathieson.

Some examples

LDAK-KVIK (Hof and Speed, 2024)

Uses mixed models: often the preferred
tool,

are more flexible and can be more
complex

than LMMs. Faster and outperforming
REGENIE, BOLT-LMM

Quickdraw (Lova et al, 2025)

Shrinks variant effects to increase
association

power, computationally efficient with
variational inference and GPU
calculations.

It also uses mixed models.


https://www.medrxiv.org/content/10.1101/2024.07.25.24311005v1
https://doi.org/10.1038/s41588-024-02044-7

Meta studies

« Individual genetic variants often have
small effects.

« Large sample sizes are required to
detect novel associations.

* Low minor allele frequency (MAF)
reduces statistical power.

« Combining individual level data is
technically and administratively
challenging (large dataset sizes,
variations in study designs, and data
protection constraints)

7,000

6,000 A

5,000 A

4,000 A

3,000 A

2,000 A

Sample size required (number of individuals)

1,000 A

Figure 1 | Effects of allele frequency on sample-size requirements. The numbers of cases
and controls that are required in an association study to detect disease variants with allelic odds
ratios of 1.2 (red), 1.3 (blue), 1.5 (yellow) and 2 (black) are shown. Numbers shown are for a
statistical power of 80% at a significance level of P <10-¢, assuming a multiplicative model for the
effects of alleles and perfect correlative linkage disequlibrium between alleles of test markers and

disease variants.

T
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Meta studies

GWAS summary statistics are
publicly available:

- Meta-studies integrate
those summary statistics

- Increased statistical power
as sample size increases

Softwares:

- METAL
- GWAMA
- MANTRA

Study design and analysis plan

Study selection and dataset collection

v

Standardization, harmonization, and quality
control of the summary statistics

/\

Meta-analysis using a

Heterogeneity analysis
proper model - Y Y

\/

Downstream analysis

Credit: Yunye He




Meta studies

GWAS cohorts

Cohort 1

Across constituent cohorts, inter-cohort
heterogeneity could arise from:

« Genuine biological mechanisms
+ Population-specific variants
+ GxG and GXE interactions
 Phenotyping
- Different diagnosis criteria
- Different proportion of subtypes
« Different measurement protocols
+ Genotyping and imputation
- Different genotyping array
- Different imputation reference panel
: - Different imputation quality
Cohort N * Quality control (QC)

- Different thresholds for MAF,
—— imputation quality, etc.
- GWAS
« Different statistical model and
software

Meta-analysis Fine-mapping

Effect models: Summary statistics-

* Fixed-effect based methods include:
+ Random-effect - ABF
* CAVIAR

Ancestries: * PAINTOR

+ Single-ancestry * FINEMAP

+ Multi-ancestry + SUSIE

.. ®
For each locus @

Typically, both pre- and
post-meta-analysis QC
are applied to summary
statistics * 95% credible sets
(Supplementary Box).

Standard outputs:
+ Posterior inclusion
probability (PIP)

Additional post-fine-map-
ping QC is sometimes
adopted.



Meta-analysis
Approaches

Fixed Effects

* Most commonly used and most powerful for discovery when assuming a
consistent effect of each risk allele across datasets.
 Inverse variance weighting is the most common method.
« Sample size weighting (z-score based) is also widely used.

Random Effects

« Less common but useful for assessing the generalizability of associations.

« Estimates the average effect size and its uncertainty across different
populations.

Bayesian Approaches (rarely used)



Meta studies
Quality control is crucial!

« Rigorous QC on the individual GWAS results
« Exclude rare variants and poorly imputed variants
« Control for population stratification and ancestry differences

« Verify input data and identify differences (tools: GWAtoolbox, EasyQC,
GWASInspector)

« Harmonization of the data (effect allele polarization)
* Perform both fixed effects approaches and compare the results

* As in GWAS, QQ and Manhattan plots are important.



Quality control
Allele flipping

Effect allele must be the same across GWAS studies.
How does it look if the effect direction is not the same?

AF Sample (OK)

1.0

08

0.6

0.4

02

0.0

good

0.2 0.4 06 08

AF Reference

AF Sample (Flipped)

1.0

08

0.6

04

02

00

allele flips




Meta-analysis software

Most commonly used software for common variant analysis: METAL

« Automatic strand flipping of non-ambiguous SNPs
« Calculation of max/min/mean allele frequency

* Inverse variance & sample size weightings

« Automatic genomic control correction

* Heterogeneity tests

Link: www.sph.umich.edu/csg/abecasis/metal/
Documentation: genome.sph.umich.edu/wiki/Metal_Documentation



Meta-analysis example!

Setup

Modify files to include:
 all information

e consistent marker
name

Tools: WAtoolbox,
EasyQC, GWASinspector

Input: Script file

# Execute analysis on 2 studies
# GENOMICCONTROL ON
# SCHEME STDERR

#-- DESCRIBE AND PROCESS 1st FILE --
MARKER SNP

ALLELE REF_ALLELE OTHER_ALLELE
EFFECT BETA

PVALUE PVALUE

WEIGHT N

STDERR SE

PROCESS gwasl.txt.gz

#-- DESCRIBE AND PROCESS 2nd FILE --
MARKER SNP

ALLELE A1 A2

EFFECT EFFECT1

PVALUE pvalue

WEIGHT N

STDERR SE

PROCESS gwas2.txt.gz

OUTFILE META_GWAS1-2
MINWEIGHT 10000
ANALYZE HETEROGENEITY

Running METAL

META_GWAS1-2.TBL.INFO

# This file contains a short description of the columns

# meta-analysis summary file, named 'META_GWAS1-2.TBL’

# Marker - this is the marker name

# Allelel - the first allele for this marker in the first file where it occurs

# Input for this meta-analysis was stored in the files: # --> Input File 1 :

gwasl.txt.gz

#--> Input File 2 : gwas2.txt.gz

META_GWAS1-2.TBL

Allelel

MarkerName
rs560887
rs853787
rs853789
rs853773
rs537183
rs557462
rs502570
rs563694
rs475612
rs853781

t

VD ~+ VYV ~+ + D O o+

Allele2

c

m o o m o o 0g o0m 0

Weight

6806
6806
5339
6806
6806
6806
6806
6806
6806
6806

Zscore
-7.075
6.691
-6.597
-6.132
6.007
6.005
-6.001
5.975
-5.867
-5.844

P-value
1.491*1012
2.221*1011
4,189*1011
8.662*1010
1.887*10°
1.917*%10°
1.955%10°
2.300*10°
4.423*10°
5.092*10°

Direction

e+
-



JOURNAL ARTICLE

GWASTools: an R/Bioconductor package for quality control and analysis
of genome-wide association studies @

Stephanie M. Gogarten &, Tushar Bhangale, Matthew P. Conomos, Cecelia A. Laurie, Caitlin P. McHugh, lan Painter,
Xiuwen Zheng, David R. Crosslin, David Levine, Thomas Lumley ... Show more
Author Notes

Bioinformatics, Volume 28, Issue 24, December 2012, Pages 3329-3331, https://doi.org/10.1093/bioinformatics/bts610

* Ensures consistency of input file columns

« Compares effect size distributions across cohorts

« Harmonized header and separator across input files

» Calculated effective N and corrects for genomic control
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