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> 500,000 loci

Types of association testing

Assessing the results: 

- Make sure things went okay
- Identify associated SNPs. 



Association tests

o Single SNP tests 

o Case-control (logistic model) 

o Quantitative traits (linear model)

o GWAS

• Imputation

• Interpreting GWAS results

• Effect sizes & P-values thresholds

• Visualization 

• Tools

Today’s topicsGWAS with the 

Genomics Sandbox



Single SNP tests

• Test to identify a genetic variant 

that affect a trait 

• Evidence from previous studies

• Monogenic traits

• Example: PCSK9

GWAS

• Scan the genome for variants that 
affect a given trait 

• > 500,000 SNPS (no prior evidence 
required)

• Likely not to have the casual SNP

• Polygenic traits



Single-SNP tests

Disease traits

Quantitative trait value

Quantitative traits



Association testing 

Idea: Statistical test to evaluate the 

association between the variant and 

disease status (e.g. case/control)

If the variant affects the trait, we expect 

differences in disease frequencies across 

genotypes (variant B)

Genotype AA are less likely to have the 

disease

How do we test if a genetic variant potentially has an effect on a disease?



Association testing 

How do we test if a genetic variant potentially has an effect on a disease?

Idea: Statistical test to evaluate the 

association between the variant and 

disease status (e.g. case/control)

If the variant affects the trait, we expect 

differences in disease frequencies across 

genotypes

Approach: test null hypothesis, 𝐻0, 

of no association between the 

variant and disease (i.e., they are 

independent)



Association testing 

Probability of disease given phenotype: 

- 𝑃 𝐷|𝐴𝐴 = 0.07,

- 𝑃 𝐷|𝐴𝐵 = 0.13,

- 𝑃 𝐷|𝐵𝐵 = 0.20

We can model the probability of disease 

of an individual 

𝑃 𝐷|𝑔



Testing for association between disease and genotype

We can use a logistic regression model 

log
𝑝

1 − 𝑝
= 𝛽0 +𝛽𝐴𝐵𝑥𝐴𝐵 + 𝛽𝐵𝐵𝑥𝐵𝐵

where 𝛽𝑠 are regression coefficients (effect sizes), 

and the 𝑥𝑠 are determined by the genotype of an individual 

We can rephrase the logistic regression model into a probability 

𝑝 =
exp(𝛽0 +𝛽𝐴𝐵 𝑥𝐴𝐵 + 𝛽𝐵𝐵𝑥𝐵𝐵)

1 + exp(𝛽0 +𝛽𝐴𝐵 𝑥𝐴𝐵 + 𝛽𝐵𝐵𝑥𝐵𝐵)

Genotypes 𝑿𝐴𝐵 𝑿𝐵𝐵

AA 0 0

AB 1 0

BB 0 1



Example

What is the probability of disease for the different genotypes?

𝑝 =
exp(𝛽0 +𝛽𝐴𝐵 𝑥𝐴𝐵 + 𝛽𝐵𝐵𝑥𝐵𝐵)

1 + exp(𝛽0 +𝛽𝐴𝐵 𝑥𝐴𝐵 + 𝛽𝐵𝐵𝑥𝐵𝐵)

For an individual with genotype AA?

𝑝(𝐷|𝐴𝐴) =
exp(𝛽0 )

1 + exp(𝛽0 )

For an individual with genotype AB?

𝑝(𝐷|𝐴𝐵) =
exp(𝛽0 +𝛽𝐴𝐵)

1 + exp(𝛽0 +𝛽𝐴𝐵)

Genotypes 𝑿𝐴𝐵 𝑿𝐵𝐵

AA 0 0

AB 1 0

BB 0 1



Example

What is the probability of disease for the different genotypes?

𝑝 =
exp(𝛽0 +𝛽𝐴𝐵 𝑥𝐴𝐵 + 𝛽𝐵𝐵𝑥𝐵𝐵)

1 + exp(𝛽0 +𝛽𝐴𝐵 𝑥𝐴𝐵 + 𝛽𝐵𝐵𝑥𝐵𝐵)

For an individual with genotype AA?

𝑝(𝐷|𝐴𝐴) =
exp(𝛽0 )

1 + exp(𝛽0 )

For an individual with genotype AB?

𝑝(𝐷|𝐴𝐵) =
exp(𝛽0 +𝛽𝐴𝐵)

1 + exp(𝛽0 +𝛽𝐴𝐵)

Genotypes 𝑿𝐴𝐵 𝑿𝐵𝐵

AA 0 0

AB 1 0

BB 0 1



Association tests (full genotype model) 

𝑝 =
exp(𝛽0 +𝛽𝐴𝐵 𝑥𝐴𝐵 + 𝛽𝐵𝐵𝑥𝐵𝐵)

1 + exp(𝛽0 +𝛽𝐴𝐵 𝑥𝐴𝐵 + 𝛽𝐵𝐵𝑥𝐵𝐵)

If there is no association, then the probability of disease is the same 

regardless of the genotype 𝑝(𝐷|𝐴𝐵) = 𝑝(𝐷|𝐴𝐴) = 𝑝 𝐷|𝐵𝐵

The logistic regression null model is 

The likelihood ratio test (LRT) compares the likelihood of the data under 

these two models (2 df) (e.g. ANOVA test in R)

log
𝑝

1−𝑝
=  𝛽0, assuming 𝛽𝐴𝐵 = 𝛽𝐵𝐵 = 0.



Simpler logistic regression models

Assuming recessive, dominant or additive genetic effects…

Dominant

Genotypes 𝑿D

AA 0

AB 1

BB 1

Genotypes 𝑿A

AA 0

AB 1

BB 2

Additive

log
𝑝

1 − 𝑝
= 𝛽0 +𝛽𝐷𝑥𝐷 log

𝑝

1 − 𝑝
= 𝛽0 +𝛽𝐴𝑥𝐴



Model assumptions, degrees of freedom and power

Which single-SNP test is the most appropriate to use?

• If a sub-model is correctly specified, a test with fewer degrees of 

freedom has greater power than the full genotype test (avoids unnecessary 

parameters).

• However, if the model is severely miss-specified, the test may lose 

power.

• A slightly miss-specified model with fewer degrees of freedom can still 

outperform a fully correct test with more degrees of freedom in terms 

of power (avoids fitting noise or random fluctuations in the data).



Generalised logistic model

Genotypes A𝐝𝐝𝐢𝐭𝐢𝐯𝐞 Dominant Recessive Full

𝑿𝐴 𝑿𝐷 𝑿𝐷 𝑿𝐴𝐵 𝑿𝐵𝐵

AA 0 0 1 0 0

AB 1 0 0 1 0

BB 0 1 0 0 1

log
𝑝

1 − 𝑝
= 𝛽0 +𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛

• The regression coefficients, 𝛽𝑠 represent the effect sizes while x𝑠 are covariates

• Additional covariates, both discrete and continuous, can be included to adjust the model 

for confounding factors such as sex, population structure, or batch effect.

The design matrix consists of columns, x𝑠, which for single-SNPs: 

Different nested models can be compared using ANOVA.  



Effect sizes – odds ratio  

How many times higher the odds of disease 

are for exposed individuals compared to 

unexposed individuals?

𝑂𝑅 =
𝑂𝐷𝐷𝐸𝑥𝑝𝑜𝑠𝑒𝑑

𝑂𝐷𝐷𝑁𝑜𝑡 𝑒𝑥𝑝𝑜𝑠𝑒𝑑
=

𝑃 𝐶𝑎𝑠𝑒 𝐸𝑥𝑝𝑜𝑠𝑒𝑑)

𝑃(𝐶𝑜𝑛𝑡𝑟𝑜𝑙|𝐸𝑥𝑝𝑜𝑠𝑒𝑑)

𝑃 𝐶𝑎𝑠𝑒 𝑁𝑜𝑡 𝑒𝑥𝑝𝑜𝑠𝑒𝑑)

𝑃(𝐶𝑜𝑛𝑡𝑟𝑜𝑙|𝑁𝑜𝑡 𝑒𝑥𝑝𝑜𝑠𝑒𝑑)

= 

100/200

100/200
400/4000

3600/4000

= 9

The definition of "exposed" depends on the model. For example, in a recessive 

model, an individual is considered exposed if their genotype is aa.

Cases Controls

Exposed (aa) 100 100

Not exposed (AA or Aa) 400 3600



Odds ratio from the logistic regression 

For example, in the dominant model 

log
𝑝

1 − 𝑝
= 𝛽0 +𝛽𝐷𝑥𝐷

where 𝛽𝐷 is the effect size

The OR from the model is 

𝑶𝑹 =
𝑂𝐷𝐷𝐴𝐵/𝐵𝐵

𝑂𝐷𝐷𝐴𝐴
=

𝑝𝐴𝐵/𝐵𝐵

1 − 𝑝𝐴𝐵/𝐵𝐵

𝑝𝐴𝐴
1 − 𝑝𝐴𝐴

=
exp(𝛽0 + 𝛽𝐷𝐷)

exp(𝛽0)
= 𝐞𝐱𝐩(𝜷𝑫)

Genotypes 𝑿D

AA 0

AB 1

BB 1



Single-SNP tests

Disease traits

Quantitative trait value

Quantitative traits



If a variant is associated with a trait, we would expect different 

trait distributions:



𝐸(𝑦) =  𝛽0 +𝛽1 𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛

Linear regression

For a simple additive inheritance model we have

effect size

Genotype of individual i

𝐸(𝑦) =  𝛽0 + 𝛽𝐴 𝑥𝐴
𝑥𝐴 is the # copies of 

the variant (0,1 or 2)

Test if 𝛽𝐴 = 0 (no association between the variant and the trait)



Linear model example 1

0 1 2

SNP ID #1

B
M

I 

m
e
a
su

re
m

e
n
t

# copies of allele

𝛽𝐴 = 0 



Linear model example 2

0 1 2

SNP ID #2

B
M

I 

m
e
a
su

re
m

e
n
t

# copies of allele

Does having more 

copies of allele #2 
equate to a 

significant linear 

incease in BMI?𝛽

𝛽



Limitations

Other loci are highly correlated (LD) with the causal variant -> also 

“associated” with the trait

All association tests assume that individuals are independent (unrelated) 

and from an homogenous (unstructured) population -> any violation can 

lead to false positive 

QC and appropriate modelling is key! 

Causal 

SNP

Genotyped 

SNP



Power of the associations tests 

Will your study answer your research question? Key: power

- # of samples 

- Test of choice (linear regression, mixed models…)

- Inheritance model (e.g. recessive)

- Effect sizes (strength of association, the larger the higher) 

- Significance level or rejection criteria (e.g. ∝ < 0.05)

- In GWAS, multiple testing 

- Allele frequencies (MAF > 5%)

- Phenotypic variance explained (R^2) -> complex traits

The lower the 

alpha, the larger

the sample size 

required to 
maintain power.



How do we test if a genetic variant potentially has an effect on 

a disease?

Single SNP tests

• Test to identify a genetic variant 

that affect a trait 

• Evidence from previous studies

• Monogenic traits

GWAS

• Scan the genome for variants that 
affect a given trait 

• > 500,000 SNPS (no prior evidence 
required)

• Likely not to have the casual SNP

• Polygenic traits

Trait

SNP
Casual 

SNP
LD

AssociationCausality



Software

- Beagle

- SHAPEIT

- IMPUTE5



?: missing sites

(large)

H
a
p
lo

ty
p
e
s

Imputation
NGS 

Extensive reference panels 

(e.g.1000 Genomes Project with > 2,500 genomes) 

https://odelaneau.github.io/GLIMPSE/glimpse1/overview.html

Statistical inference of 

missing sites based on 

haplotype similarity



Why imputation in GWAS? 

• To allow comparison across GWAS studies 

• To perform meta-analysis with other samples on other chips 

• To fine map – i.e. run association at variants we have not genotyped 

• To improve call rate – i.e. increase the number of variants available for 

poorly genotyped samples (not ideal)



Association testing  

- Generalized linear models 

- Penalized multiple regressions

- Bayesian methods 

How can we interpret GWAS results? 

What is the strength and reliability of the associations in our GWAS results?

More complex models try to 

take care of the limitations 
GWAS studies might have



https://doi.org/10.3389/fgene.2020.00424

Which variant has 

the highest 

association?

Are they all in high-

LD? (beta and p-

value very similar)

Variable levels of 

regulatory activity 

across cell types 

Genes within the 

associated locus

https://doi.org/10.3389/fgene.2020.00424


Effect sizes
Strength of association

Odds Ratio

Binary traits 

• OR = 1 → No effect on the trait.

• OR > 1 → The allele increases the 

odds of having the trait.

• OR < 1 → The allele decreases the 

odds of having the trait.

Beta

Quantitative traits

Change in the trait value per 

additional copy of the allele.

• β > 0 → The allele increases the 

trait value.

• β < 0 → The allele decreases the 

trait value.𝑶𝑹 =  𝐞𝐱𝐩(𝜷𝑿)

E.g.: An OR of 1.12 means we will expect to see 

a 12% increase in the odds of having Parkinson’s 
disease for a one unit increase in allele copy.



Effect size, what can we detect? 

Hard to 

identify 

genetically

Highly 

unusual for 

common 

disease

Most 

identified 

by GWAS

https://doi.org/10.1371/journal.pcbi.1002822

https://doi.org/10.1371/journal.pcbi.1002822


Manhattan plots: p-values
Significance of the association

Useful to visualize our GWAS results and 

identify potentially associated regions

The height of the spike 

represents the strength 
of the association with 

the phenotype



What are the consequences of poor quality control?

chromosome

-𝑙
𝑜

𝑔
1

0
(𝑃

)

1            2             3        4         5       6       7           8        9    10     11   12  13     14   15  16  17 18 19 20

6

2

0

4

8

We would expect association study results to indicate very few 

associations between SNPS a specific trait!



Multiple testing and p-values
Significance of the association

• Common threshold for a single test (𝛼 = 0.05)

• In the plot: -log(0.05) = 1.3 

• >100,000 tests → Inflation of false positives 

𝛼 = 0.05



• Common threshold for a single test (𝛼 = 0.05)

• >100000 tests → Inflation of false positives  

→ We need deflation of p-value

How do we avoid false discovery?

Multiple test adjustments 

- Bonferroni correction: 𝛼𝑛𝑒𝑤 =
𝛼

#𝑡𝑒𝑠𝑡𝑠

- Permutations: multiple tests with subsets of data 

Multiple testing and p-values
Significance of the association



Multiple testing and p-values

Bonferroni correction

𝛼 = 0.05

Approx. 1 million independent tests: P < 5x10-8 “genome-wide” 

significance

Multiple testing and p-values
Significance of the association



QQ-plot
Significance of the association

How likely the observed association is to be real?

Let’s look at some examples…



Expected distribution of p-values in a typical (A) Manhattan plot, (B) cumulative p-value distribution, and 

(C) Q–Q plot. Circles in (B) and (C) denote where the median p-value (red line) falls on the graph in 
comparison to the expected median p-value (yellow line). Here, the median falls close to 0.5, suggesting that 

population structure is not affecting association results or has been corrected for in the model. Q–Q, quantile–

quantile. https://doi.org/10.1371/journal.pgen.1007309.g004

Significant threshold
What do we 

expect to see?
A few SNPs over 

the significant 

threshold.

Most are not associated 

with the phenotype

A few show stronger 

signals than expected at 

the tail 

https://doi.org/10.1371/journal.pgen.1007309.g004


Observed distribution in a (A) Manhattan plot, (B) cumulative p-value distribution, and (C) Q–Q plot. Circles 

in (B) and (C) indicate where the median p-value falls on the plot compared to where it is expected. Here, there 

is a substantial deviation between the red and yellow lines due to inflation of false positive associations for 

the body weight phenotype. Q–Q, quantile–quantile. https://doi.org/10.1371/journal.pgen.1007309.g005

Significant threshold

Extreme amount of SNPs 

crossing this line (50% 

showing “significant 

association”)

Log-

transformed

https://doi.org/10.1371/journal.pgen.1007309.g005


• Linear regression models using 

PLINK

• Correcting for multiple testing 

• Visualization: 

• Manhattan 

• Q-Q plots

~ 30 min 

GWAS5-AssociationTesting.ipynb



Solutions 

• Problems/Issues/Comments?



Comparing two GWAS approaches

Are we being too conservative? What might more extreme p-

values in GWAS indicate?

Which model is more appropriate in GWAS?



Comparing two GWAS approaches

Stringent adjustments could 

lead to higher false negatives 

More extreme p-values might 

indicate inflation due to 
confounding!

Which model is more appropriate in GWAS?



Q-Qplots

This is what we would expect before and after adjusting for population 
structure… 

We might not have enough power 



GWAS software

• PLINK 

(-) limited flexibility on imputed data using allele dosage information (no hard calls)

• BOLT-LMM 

(+) accounts for relatedness, very fast for large datasets 

(-) linear regression only, genotyped and imputed data required (two-step approach) 

• Regenie

(+) accounts for population structure and relatedness (on most cases), rare variant analysis possible, very 
fast for large datasets, analysis of multiple traits at once 

(-) two-step analysis

• Quicktest

(+) very fast, can calculate GxE effects 

(-) not accounting for relatedness 

• SAIGE 

(+) accounts for relatedness, very fast for large datasets, rare variant analysis possible (gene-based tests) 

• Raremetalworker

(+) accounts for relatedness, rare variant analysis possible 

(-) linear regression only, requires specific software for meta-analysis (Raremetal) 



GWAS software Links 

• PLINK 

• https://www.cog-genomics.org/plink/1.9/ (v1.9) 

• https://www.cog-genomics.org/plink/2.0/ (v2.0) 

• Quicktest

• https://wp.unil.ch/sgg/program/quicktest/ 

• BOLT-LMM 

• https://www.hsph.harvard.edu/alkes-price/software/ 

• SAIGE 

• https://github.com/weizhouUMICH/SAIGE 

• Raremetalworker

• https://genome.sph.umich.edu/wiki/RAREMETALWORKER 

• Regenie

• https://rgcgithub.github.io/regenie/



Additional important validations?

• Are there signs of something being wrong?

• Consequences of bad QC in downstream analysis

• Case-study



Polygenic scores discordance when using effect sizes from different cohorts
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Polygenic scores discordance when using effect sizes from different cohorts
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▪ All association tests assume independent samples—has this 

assumption been violated?

▪ Is the accuracy of the scores influenced by the ancestry of the GWAS 

panel?

▪ Was rigorous quality control (QC) performed?

▪ Is there any overlap between the GWAS panel and the target sample?

▪ Since accuracy depends on the P-value threshold, did we test 

multiple thresholds and select the optimal one?

Are the differences driven by population stratification?

More on the lack of transferability in the next lecture
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Sohail et al. 2019

Population structure along PCA axes

Effect sizes (𝛽) GIANT



Analysis inspired by Sohail et al. 2019

Population structure along PCA axes

Effect sizes (𝛽) UK BiobankEffect sizes (𝛽) GIANT

Population stratification reduced 

using large-scale datasets with 

relatively homogeneous ancestries



Adjusting effect sizes can increase PRS accuracy using LD 

information from a external reference panel 

LDpred
(Vilhjalmsson et al. AJHG 97:576-592) 



• Visualize potential residual 

population stratification in the 

discovery GWAS

Why is important? This will have an 

effect on your downstream analysis. 

~ 15 min 

GWAS5b-PopulationStratification.ipynb



Solutions 

• Problems/Issues/Comments?



Which model is more appropriate in GWAS?

What else can we do? Run a linear mixed model!

Solutions 
Comparing two GWAS approaches



Samuele Soraggi, PhD
Sandbox Data scientist

Center for Health Data Science (HeaDS)

from the

Health Data Science 

Sandbox

LMM and 

meta-

analysis



Association tests

o GWAS

• Linear mixed models 

• Tools

o Meta-analysis 

Today’s topicsGWAS with the 

Genomics Sandbox



Linear Mixed Models (LLMs)
Challenges in traditional GWAS

• Standard GWAS uses linear regression:

• Population structure and relatedness introduce false positives

• The model is missing terms to describe their effect

• E.g. Height differences between populations can confound results

𝑦 = 𝑋𝛽 + 𝜖, 𝑤𝑖𝑡ℎ 𝜖~𝑁 0, 𝜎2𝐼 

βy

X

β

β

β

…



Linear Mixed Models (LLMs)
The random effect term

𝑦 =  𝑋𝛽 + 𝑢 + 𝜖, 𝑤𝑖𝑡ℎ 𝜖~𝑁 0, 𝜎2𝐼 ,
𝑢~𝑁 0, 𝑍 

                           Z cov. matrix of r.e.

Fixed

effect

Polygene

or
Random 

effect

Residual



Linear Mixed Models (LLMs)
The random effect term

How does the r.e. term acts in our model?

𝑢

…       …

𝑥1 𝑥𝑖 𝑥𝑝

𝑦

Pop.structure, ...

SNPs affected by u

Trait affected by u + SNPs



Linear Mixed Models (LLMs)
variances to consider 

𝑦 = 𝑋𝛽 + 𝑢 + 𝜖,

𝑦 = 𝑋𝛽 + 𝜖

To include genetic effect

𝑍 = 𝐾 = 𝐾𝑖𝑛𝑠ℎ𝑖𝑝 𝑚𝑎𝑡𝑟𝑖𝑥
𝑦 = 𝑋𝛽 + 𝑢 + 𝜖

𝜖~𝑁 0, 𝜎𝑒
2𝐼 (residual env. effect) 

𝑢~𝑁 0, 𝜎𝑔
2𝐾 (genetic effect)

𝜎𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒

𝜎𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝜎𝑒𝑛𝑣𝑖𝑟

To include genetic effect 
+

other covariates

𝑍1 = 𝐾 = 𝐾𝑖𝑛𝑠ℎ𝑖𝑝 𝑚𝑎𝑡𝑟𝑖𝑥
𝑍2 = 𝑄 = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝑦 = 𝑋𝛽 + 𝑢1 + 𝑢2 + 𝜖

𝜖~𝑁 0, 𝜎𝑒
2𝐼 (residual env. effect) 

𝑢1~𝑁 0, 𝜎𝑔
2𝐾 (genetic effect)

𝑢2~𝑁 0, 𝜎𝑄
2𝑄 (covariates effect)



Linear Mixed Models (LLMs)
In practice – fill in the variables

𝑦 = 𝑋𝛽 + 𝑢1 + 𝑢2 + 𝜖 → 𝒚 = 𝑿′𝜷′ + 𝒖

𝑥11 𝑥12 … 𝑥1𝑛 𝑃𝐶11 𝑃𝐶12 …
𝑥21 𝑥22 … … 𝑃𝐶21 𝑃𝐶22 …
… … … … … … …

𝑥𝑘1 𝑥𝑘2 … 𝑥𝑘𝑛 𝑃𝐶𝑘1 𝑃𝐶𝑘2 …

n SNPs (normalized)

k samples

Other covariates

(PCA, ...)

𝑢~𝑁 0, 𝜎𝑔
2𝐾 + 𝜎𝑒

2𝐼 = 𝑁(0,𝑽)

Kinship matrix

(finer relatedness structure)

Easily calculated with plink, GCTA, ...

Residual environmental

effect and noise

Total covariance 

matrix



Linear Mixed Models (LLMs)
In practice – parameters not directly calculated, heritability

𝑢~𝑁 0, 𝜎𝑔
2𝐾 + 𝜎𝑒

2𝐼 

𝒚 = 𝑿′𝜷′ + 𝒖

Very innocent-looking formula

What about the variances 𝜎𝑔
2, 𝜎𝑒

2

Heritability comes into play

ℎ2 =
𝜎𝑔

2

𝜎𝑔
2+𝜎𝑒

2 = 
𝜎𝑔

2

𝜎𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒
2

Heritability = variance proportion 

explained only by genetic 

variance.

The fundamental parameter for

phenotype prediction



Linear Mixed Models (LLMs)
Some approaches

𝑢~𝑁 0, 𝑉

ℎ2 =
𝜎𝑔

2

𝜎𝑦
2 → ℎ2𝜎𝑦

2 = 𝜎𝑔
2

y usually normalized so 

𝜎𝑦
2 = 1

𝒚 = 𝑿′𝜷′ + 𝒖

BOLT-LMM

(Loh et al. 2015)

Optimizes

𝑉 = 𝜎𝑔
2𝐾 + 𝜎𝑒

2𝐼

Through prior on sigma’s. 

Then uses  ℎ2 =
𝜎𝑔

2

𝜎𝑦
2 to 

define heritability.

Regenie
(Yang et al. 2011)

- Does not use K, but 
principal components

- Shrinks effect of SNPs to 
0 to avoid overfitting

- Multiple other steps to 
avoid overfitting such as 
penalties and cross-
validation

- Very fast and good for 
large studies with > 
Millions of SNPs



Linear Mixed Models (LLMs)
Some approaches

A phylogeny of 33 GWAS algorithms. If two algorithms are connected by an arrow, the target is based on the source with additional techniques indicated by the 
text If two algorithms target the same algorithm, the target combines the techniques implemented by the two sources. P3D, population parameters previously 
determined; MC, Monte-Carlo; LOCO, leave-one-chromosome-out; MLR, multi-variate linear regression; RES-LR, using the residuals from the null model as the 
response to test marker effects in a simple linear model. From (Liu et al, 2023, bioArxiv. DOI 10.1101/2023.12.05.570105).



Beyond LLMs
New methods

New methods are

- Fast on large datasets
- Reliable in detecting association

- Use mixed models

- Have faster implementations

LDAK-KVIK (Hof and Speed, 2024)

Uses mixed models: often the preferred 
tool,

are more flexible and can be more 

complex 

than LMMs. Faster and outperforming

REGENIE, BOLT-LMM

Quickdraw (Loya et al, 2025)

Shrinks variant effects to increase 

association

power, computationally efficient with 
variational inference and GPU 

calculations.

It also uses mixed models.  

Some examples

From basic Genomics Control (rescaling test

statistics) to correcting through PCA only and

to Mixed Models, of which LMMs are a special

case. Credit Iain Mathieson.

https://www.medrxiv.org/content/10.1101/2024.07.25.24311005v1
https://doi.org/10.1038/s41588-024-02044-7


• Individual genetic variants often have 

small effects.

• Large sample sizes are required to 

detect novel associations.

• Low minor allele frequency (MAF) 

reduces statistical power.

• Combining individual level data is 

technically and administratively 

challenging (large dataset sizes, 

variations in study designs, and data 

protection constraints) 

Meta studies



Meta studies

GWAS summary statistics are 

publicly available:

- Meta-studies integrate

those summary statistics

- Increased statistical power 
as sample size increases

Softwares:

- METAL
- GWAMA

- MANTRA



Meta studies

GWAS summary statistics are 

publicly available:

- Meta-studies integrate 

those summary statistics

- Increased statistical power 
as sample size increases

Softwares:

- METAL
- GWAMA

- MANTRA Credit: Yunye He



Meta studies



Meta-analysis 

Approaches

Fixed Effects

• Most commonly used and most powerful for discovery when assuming a 

consistent effect of each risk allele across datasets.

• Inverse variance weighting is the most common method.

• Sample size weighting (z-score based) is also widely used.

Random Effects

• Less common but useful for assessing the generalizability of associations.

• Estimates the average effect size and its uncertainty across different 

populations.

Bayesian Approaches (rarely used)



Meta studies
Quality control is crucial! 

• Rigorous QC on the individual GWAS results 

• Exclude rare variants and poorly imputed variants 

• Control for population stratification and ancestry differences

• Verify input data and identify differences (tools: GWAtoolbox, EasyQC, 

GWASinspector)

• Harmonization of the data (effect allele polarization)

• Perform both fixed effects approaches and compare the results

• As in GWAS, QQ and Manhattan plots are important. 



Quality control 
Allele flipping 

Effect allele must be the same across GWAS studies. 

How does it look if the effect direction is not the same?



Meta-analysis software

Most commonly used software for common variant analysis: METAL

• Automatic strand flipping of non-ambiguous SNPs 

• Calculation of max/min/mean allele frequency 

• Inverse variance & sample size weightings 

• Automatic genomic control correction 

• Heterogeneity tests

Link: www.sph.umich.edu/csg/abecasis/metal/ 

Documentation: genome.sph.umich.edu/wiki/Metal_Documentation



Meta-analysis example!

Setup

Modify files to include: 

• all information 

• consistent marker 

name

Tools: WAtoolbox, 
EasyQC, GWASinspector

Input: Script file Running METAL

# Execute analysis on 2 studies 
# GENOMICCONTROL ON 
# SCHEME STDERR

#-- DESCRIBE AND PROCESS 1st FILE --
MARKER SNP 
ALLELE REF_ALLELE OTHER_ALLELE 
EFFECT BETA 
PVALUE PVALUE 
WEIGHT N
STDERR SE
PROCESS gwas1.txt.gz

#-- DESCRIBE AND PROCESS 2nd FILE --
MARKER SNP 
ALLELE A1 A2
EFFECT EFFECT1 
PVALUE pvalue
WEIGHT N 
STDERR SE
PROCESS gwas2.txt.gz

OUTFILE META_GWAS1-2 
MINWEIGHT 10000 
ANALYZE HETEROGENEITY

MarkerName Allele1 Allele2 Weight Zscore P-value Direction

rs560887 t c 6806 -7.075 1.491*10-12 ---

rs853787 t g 6806 6.691 2.221*10-11 +++

rs853789 a g 5339 -6.597 4.189*10-11 ?--

rs853773 a g 6806 -6.132 8.662*10-10 ---

rs537183 t c 6806 6.007 1.887*10-9 +++

rs557462 t c 6806 6.005 1.917*10-9 +++

rs502570 a g 6806 -6.001 1.955*10-9 ---

rs563694 a c 6806 5.975 2.300*10-9 +++

rs475612 t c 6806 -5.867 4.423*10-9 ---

rs853781 a g 6806 -5.844 5.092*10-9 ---

META_GWAS1-2.TBL 

META_GWAS1-2.TBL.INFO 

# This file contains a short description of the columns

# meta-analysis summary file, named 'META_GWAS1-2.TBL’

# Marker - this is the marker name 
# Allele1 - the first allele for this marker in the first file where it occurs 
.

.
# Input for this meta-analysis was stored in the files: # --> Input File 1 : 
gwas1.txt.gz 
# --> Input File 2 : gwas2.txt.gz



• Ensures consistency of input file columns 

• Compares effect size distributions across cohorts

• Harmonized header and separator across input files

• Calculated effective N and corrects for genomic control 
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