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Intro to GWAS topics

. Why GWAS?

. The genome, DNA structure and genetic

variations

. GWAS types and examples

. GWAS steps overview



What and why?

The genome and the phenome

Genomic make-up of an individual

Variations in the genome between
individuals (e.g. SNPs) stays constant
through lifetime!

“Genome-wide” studies consider
variation in millions of position across
the genome

Phenome is a snapshot of your
biology comprising all
traits/phenotypes
Measurable traits (blood pressure, BMI)
Disease status (multiple sclerosis,

diabetes) I
Behavioural traits (smoking)
) 4



What and why?

The genome and the phenome

What is the genetic
contribution to observed
phenotypic variation?



Why GWAS?

Genome-phenome association

Goal: To identify specific genetic variants
that influence a specific trait

Why? typically disease related traits, e.g.
febrile seizures or the susceptibility to
diabetes

Approach: an statistical association test can
« suggest causal link between the two
 allow predicting one from the other

GENOTYPE

PHENOTYPE




Why GWAS?
Studying the genome...

It can benefit:

Molecular and
environmental
interventions against
harmful phenotypes



Why GWAS?
Studying the genome...

It can benefit:

@ Improving the ways

we utilize microbes,

plants or animals
Biotechnology




Why GWAS?
Studying the genome...

It can benefit:

Biotechnology

More accurate
identification of
an individual from

@ DNA sample



Why GWAS?
Studying the genome...

It can benefit:

Biotechnology

Ancestry
inference

Biogeographic
ancestry
inference of
individuals,
populations &
species



Why GWAS?
Studying the genome...

It can benefit:

Biotechnology

Ancestry
inference

The role of natural
selection and other
evolutionary forces in
the living world

Evolutionary
studies

(natural
selection)



Why GWAS?
Studying the genome...

Why pursue this goal?
* Help uncover the underlying genetic architecture of the trait
* Hopefully improve the understanding of diseases mechanisms

« Ideally lead to better treatments and prevention strategies

It can also be used in evolutionary studies e.g. it helps trace how traits
have evolved and uncover adaptations to different environments over
time!



Before GWAS:
Studying the genome...

Single SNP studies - PCSK9

PCSK9 gene on chr1 codes for a protein 692 amino
acids long.

The enzyme binds to and degrades the low-density
lipoprotein particles (LDL) receptor on liver cells.
The receptor initiates the ingestion and destruction
of LDL particles.

With fewer LDL receptors, less LDL is
cleared from the bloodstream, leading to
higher blood cholesterol levels.

Proprotein convertase
subtilisin/kexin type 9



Before GWAS:

Studying the genome... PSCK9 NONSYN; b=-0.57, p=1e-14; N=2099

A genetic variant in PCSK9 associated with o
cholesterol levels

2099 individuals in Finland

Carriers of T variant have lower LDL
cholesterol levels than carriers of G

oo

LDL (Qnormalised)
0

Importance? LDL is a strong risk factor of o

heart disease i o

Zhao et al. AJHG 2006 discovered that 0 1 )

knocking out PCSK9 could reduce LDL. e Gonciypo Y
# copies of T

Molecular Characterization of Loss-of-Function Mutations
in PCSK9 and Identification of a Compound Heterozygote

Zhenze Zhao,” Yetsa Tuakli-Wosornu,” Thomas A. Lagace, Lisa Kinch, Nicholas V. Grishin,
Jay D. Horton, Jonathan C. Cohen, and Helen H. Hobbs



Applications: From genomics to treatment | s poemamesy

—4— 140 mg evolocumab every 2 weeks (n=110)
~#- 420 mg evolocumab monthly (n=110)

PCSK9 inhibition with evolocumab (AMG 145) in
heterozygous familial hypercholesterolaemia
(RUTHERFORD-2): a randomised, double-blind,
placebo-controlled trial

Frederick | Raal, Evan A Stein, Robert Dufour, Traci Turner, Femando Civeirn, Lesley Burgess, Gisle Langslet, Russell Scott, Anders G Olssan,
David Sullivan, G Kees Hovingh, Bertrand Cariow, leanna Gouni-Berthold, Ransi Somaratne, lan Bridges, Rob Scott, Scott M Wasserman,
Daniel Gavdet, for the RUTHERFORD-2 Investigators™ -80

Change from baseline in LDL cholesterol (%)

I I 1 1
Baseline Week 2 Week 8 Week 10 Week 12
Evolocumab every 2 weeks .. T T T T ) T
Evolocumab monthly .. 1 2 T T
ORIGINAL ARTICLE f ¥ in B2

s .1 - FDA Approves Amgen's Repatha® (evolocumab) To Prevent
Evolocumab and Clinical Outcomes in Heart Attack And Stroke

Patients with Cardiovascular Disease ,
| o Evolocumab reduced the risk of heart attack by
Authors: Marc S. Sabatine, M.D., M.P.H., Robert P. Giugliano, M.D., Anthony C. Keech,

M.D., Narimon Honarpour, M.D., Ph.D., Stephen D. Wiviott, M.D., Sabina A. Murphy, 27 percent, the r]Sk Of StrOke by 21 percent and

:'\.-1_P.Ht.., J::JhaJF K‘:d;—:, Ml..-‘:'\]; é:At_:lr tt|'.‘|E‘ FOURIER Steering Committee and the r-isk Of Coronary revascular-ization by 22
nyvestgators utnor Infto Hiatigns
percent

Published May 4, 2017 | N Engl | Med 2017;376:1713-1722
DOI: 10.1056/NEJMoal615664 | VOL. 376 NO. 18 | Copyright ©_2017




The human genome

Sequence of 3.2 billion nucleotides
(or base pairs: { A, C, G, T})

It is an organism’s complete set of
genome instructions

Two copies: maternal and paternal

Genome is physically divided into 22
pairs of autosomal chromosomes and

1 pair of sex chromosomes (males XY,
female XX)
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General concepts
DNA structure

DNA Structure

Nucleotide
base pairs:

Nulleus .Guanine y {
Cytosineﬁg—f : \
2 - A

Adenine

M Thymine % ’/

https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/nucleotide

DNA is in the nucleus, forming
chromosomes.

Chromosomes have histones
that bind to DNA.

DNA is a double helix (spiral
ladder shape).

Made up of four bases: A, T, G,
C (A-T, G-C pairing).

Genes = DNA segments that
code for proteins.



General concepts
Genetic variation




General concepts
Types of variation

A Substitution Insertion Deletion Indel
wild-Type: AAC GG 1TGTAA AACGGCCTGTAA AACGGCC[TIGTAAC AACGG GTAA
B Deletion Insertion Translocation
Wild-Type: ——— —a— - - _ — - —_— —
Mutant: - - —_— - - — . -
B i
C Duplication Inversion

- —_— ——

Wild-Type:
Mutant:

{
i

Individual 1: AA GG TIGTAA - .

Individual 22 AACGGCCITIGTAA On this course, we consider SNPs as
Individual 3: AAC GG TIGTAA . ) . .
Individual 41 AACGGC CIAGTAA the canonical type of genetic variation
Individual 5: AACGGCC|ITGTAA . .
Individual 6: AACGGCCIAGTAA and assume that SNPs are biallelic

(only 2 alleles present in the
population)

Cardoso et al. 2015 https://doi.org/10.3389/fbioe.2015.00013 ) & 4



General concepts
Single nucleotide polymorphism (SNP)

On average, 1 in 300 positions in genome exhibit common variation

(MAF>5% or 1%) in the population; these are called “SNPs”.

Rare variant if MAF< 0.01%

Genomes in population Genotype at this SNP in population
.GCGTT .. 96% 0: GG ~92.1%
GCTTT.. 4 % 1: GT ~7.7 %

Only forward 2: 1T ~0.2%

strand of

genomes is This is a SNP, with alleles: G / T,

shown here minor allele frequency (MAF) = 4%



General concepts
Reading SNPs

- Human SNP array can measure
10® SNPs reliably (predefined set)

- Fairly cheap: cost per individual
~30 euros -> key to making GWAS

possible

Principle of a DNA microarray chip: use as Variant Detector Arrays (VDAs)
(after SM Carr et al. 2008. Comp Biochem Physiol D, 3:11)

https://www.mun.ca/biology/scarr/DNA_Chips.html

A
o



General concepts
Genotype calling from SNP array data

Dark blue and red
are homozygotes
for one allele
Green is
heterozygote

Example: variant rs6540301

58C UKBS
Example: variant RS727641
58C UKBS

There are other cases when the algorithm

The calling algorithm tries to
find the three genotype
clusters.

<- Good calling

Light blue means algorithm has
made no call. ERROR, rare
variant has less than 3 clusters.

performs the wrong call (violations of HWE )



General concepts
Traits of interest

Monogenic trait

- Single variant
1 base change == disease
Relatively easy to detect

- Thousands of variants with

small effects

- Probability of the disease or

having the trait (high/low)
Hard(er) to detect

|

Complex traits
(environmental factors)




Many complex traits are highly polygenic

Continuous traits

Anthropometric traits Early growth traits
BMI Child birth length
Height C—3 Child birth weight

Hip circumference (O Childhood obesity
Waist circumference @ Infant head circumference
Waist-to-hip ratio

Age at menarche Intelligence, cognitive

ability, and educational
attainment traits

Childhood 1Q
Cognitive performance
Intelligence

Years of schooling

Cholesterol traits

HDL cholesterol
€

LDL cholesterol
Total cholesterol

Triglycerides @

Diseases

Common chronic diseases Psychiatric diseases and

Asthma brain conditions
Alzheimer's disease Autism spectrum disorder
Type 2 diabetes Bipolar disorder

Coronary artery disease Major depressive disorder

Schizophrenia
Inflammatory bowel
diseases Other
Crohn’s disease College completion
Inflammatory bowel disease Rheumatoid arthritis
Ulcerative colitis

Mm@ @ D




Genome-wide association study

Statistical problem: is a genetic variation at a particular position
associated with observed phenotypic variation?

GWAS
Catalog

@ Digestive system disease
@ Cardiovascular disease

Immune system disease

Inflammatory marker
measurement

Cholesterol levels

I
N




GWAS

SNP-Trait Discovery Timeline

12500

100001

\‘
(o4}
o
o

5000

Cumulative SNPs

2500

Disease or Trait 2

Disease or Trait 3 Menarche (age at onset)
Blood metabolite levels

.| Height: Number of Significant )
' | SNPs for the trait or disease Red blood cell traits

Number of Significant . |
SNPs in this year i | Width: Fraction of publications Elnﬂamm.atory bowe.l disease ,
/| for the trait or disease Bone mineral density

Celiac disease
Crohn's disease | 4 LSS,
| i a

Height

QT interval
LDL cholesterol I.I.-.ipid ;n:.ta::tllsm phenotypes e
Triglycerides ypo-l.dia es

""""" a

Crohn's disease
Inflammatory bowel disease

Glomerular filtration rate (creatinine)

Alzheimer disease and age of onset
Disease or Trait 1
Educational attainment (years of education)

A, EPOS! bronchodilator FEV1/FVC ratio

Time

Am J Hum Genet . 2017 Jul 6;101(1):5-22. doi: 10.1016/j.ajhg.2017.06.005

.‘..‘ v ~ \/,‘:. ‘»._-\ ....... ,\:',,f
["ICrohn’s disease R 2]l
/ = T Breast cancer
4 Metabolic traits Rheumatoid arthritis
1»\ Platelet count
\"\.,, Multiple sclerosis
Before 2008 2008 2009 2010 2011 2012 2013 2014 2015 Till 09/2016


https://doi.org/10.1016/j.ajhg.2017.06.005

GWAS
Primary types of GWAS

Quantitative trait-based GWAS Disease trait-based GWAS

o] = llllll‘llllmm‘lluﬂ.- Cases Controls
0 10 20 30

Quantitative trait value

B
o

Frequency

N
o

Let’s next look at two examples GWAS I



Example 1: Quantitative GWAS
Body-mass index (BMI)

> 300,000 individuals from 125
cohorts (studies)

97 loci associated (genomic
regions)

Each locus is a hint to biology of
BMI

Genes involved in energy
metabolism, lipid biology, insulin
secretion and adipogenesis

Results highlight role of central
nervous system in BMI

-log1¢(p—-value)

AGBL4

—pm o = Gapea o m e :U

© {ELAVL4 * HIP1
NAve 3 . DTX2P1-UPK3BP1-PMS2P11 oo s
i ' TDRG1 HIF1AN RABEP1:
' ¥ kenks FOXO3 NT5C2 NLRC3 0
% 1 * I EHBP1 EAGE TCF7L2 SBK1
. % UBE2E3 : | HSD17812 KAT8
! ; :ERBB4 SCARB2 : c90rf93 : CADM1 i
o g o FHIT ~ § HHIP l;'fg:ﬂw 4 DmxL2* '
® . LR
§ % GBE1 ! . : o i STXBP6
I ll RasAz § S ¢ 1 prent 1 I
A H . RALYL * $
& - '! LI = l

Chromosome

Manhattan plot shows -log,, P-value of each SNP
tested in GWAS. Previously known loci are in blue,
new findings are in red.

Suppl. Fig 1, Locke et al. 2015
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Example 1: Quantitative GWAS

Body-mass index (BMI)

. SNP with no association SNP with clear association

Association tests at 2.5 ; b o724

orq e =0.04424 =0.
million SNPs .
For each test, does the BMI | —— = ©- I
differ between genotype _ | f “1 — =

roups? ol il 1 71 E=E
g p Q | | : o - ' ##___f-'_"!_
Linear regression slope, f8 ol T < T 0l
(SE and P-value) 0 ,' > 0 1' ;

Copies of effect allele Copies of effect allele
Locke et al. 2015 I



Example 1: Quantitative GWAS

Body-mass index (BMI)

50 4 '
B

AGBL4
© {ELAVL4
- NAV1 3
@
2 e |
2 ! KCNK3
C * ! EHBP1
- . UBE2E3
T { ., ERBB4 SCARB2
FHIT Y HHIP
: GBE1 !
i RASA2 1§ ° .
} I. |
- LI ® 2 9
- . i. ..
--ls- SN G . . . 3 I (-
: ’ i) T,
1 2 3 4

Suppl. Fig 1, Locke et al. 2015

Each locus in labelled by a
nearby gene (but that gene is
not necessarily causal.)

|

HIP1
DTX2P1-UPK3BP1-PMS2P11 00
TDRG1 HIF1AN
FOXO3 NT5C2
g TCF7L2
. HSD17B12
c90rf93 « CADM1
EPB41L4B °
TLR4 I
' tmx18 b}
' RALYL® I !
i .
» . :
s i e i il i s o v !-_--!_--- S -.‘_-:- _.-
[ Py 8 o 10 1 12
Chromosome

13 14

RABEP1 *
NLRC3 §
SBK1
KATS8 i
'l
DMXL2*
STXBP6 .
PRKD1 ! ]l H

15 16 17 18

Genome-wide
significance level at
P=5e8 or -log,o(P) = 7.3.

19 20 21 22



Example 1: Quantitative GWAS

Zooming into one associated region

Qur SNPs | UTCTE 0N W TWN 000N 000 NN NEY SO N U TNEW DU IE A AT Y

100

—-80

- 60

40

- 20

60— ,
r? with reference SNP
- 0 0.2 0.8 1
50- ? } { H rs9944515 W
: [ 17066542 A
! [ 0567160
40 :
% :
= ;
@ 30~ | rs9944545
Q : : P,=1.0x10%
= @ | = 8
- &9 !
(@)} > ' £ ’
S 204 . ? Ne= 3" o .
o *olupond o = P 70x 100
' ® L J 1] 5 J
" ; - : . *a
104 l - : ' i
| Q:. o | 1
I ] . i -
O - el M ‘i..\..-—-._..HL.M—H &L—-n-b-,’.:k—&- gl / —:M‘
«MC4R
I ] I 1
55.8 55.9 56 56.1 56.2

Position on chri18 (Mb)

(,-QW WO) 81kl uoleuIquIooay

Many SNPs show strong
association; not clear
which are causal ones.

What does each variant
do? Change a protein? The
gene expression in certain
condition?

Locke et al. 2015
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Example 1: Quantitative GWAS

Looking for patterns

Results highlight role of central
nervous system in BMI

How? By combining signals
across the genome.

Does the significantly associated
variation tend to be near genes?
Regulatory regions?

Are the GWAS signals in/near
genes enriched for expression in a
particular tissue/cell

—log,,(P value)

5 -

the dotted line

47 represents statistically
significant enrichment

) Y
g i Ny & & ey & &
& \Cg? & @6\ é‘e{\ fo \\Q’ <')‘<2> ) &
3 S R i «
& o<« & %c})\' F® N
<id (&0 & @\} *
&

Physiological system

DEPICT predicts genes within BMI-associated loci
(P <5 x10-4) are enriched for expression in the I
brain and central nervous system



Testing multiple phenotypes for tissue-specific enrichment across many tissues

15

10

—Iog1o (P)

Schizophrenia

IR

Adipose

Blood or immune
Cardiovascular
CNS

Digestive

Liver

Musculoskeletal—
connective

Pancreas
Other

-log,, (P)is of the
association between the
trait (title) and the
tissue/cell type (see
legend)

Large circles pass the
cutoff of FDR < 5% at
-log,, (P)=2.75

Finucane et al. 2018 Nat Gen



Testing multiple phenotypes for tissue-specific enrichment across many tissues

-|°g1o (P)

_|°g10 (P)

_l°g1o (P)

15

Schizophrenia Rheumatoid arthritis Height
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""""""""""" s [ Musculoskeletal—
e : u® : 2 ; RS connective
______ $@_ oo ooiumians ; ) ’ ) B *% e B Pancreas
a4 " G . '*': .-.'-.':.._'.".;‘_.- .',-,' 0 {‘-' ; ; :"_‘-‘:" I Other
BMI Lupus Waist-hip ratio (adj. BMI) LDL
o 5y .
&
®
®
& s 8 r ® ®
®
2 0 TEholooswsuosansscsss
o - .
} 4 2
______________________________ o o---.9
g 2 v, y
. K 43 K3 | i eunrel
DS UL o e PR IeN 0 St YN Senita 2 oud X
Epilepsy Asthma Migraine without aura Type 2 diabetes
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e ° . e . e, -«**
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. L e P R ] PR X PPN, 1 Ledi ol ) o
Tissue Tissue Tissue Tissue

-log,, (P)is of the
association between the
trait (title) and the
tissue/cell type (see
legend)

Large circles pass the
cutoff of FDR < 5% at
-log,, (P)=2.75

Finucane et al. 2018 Nat Gen



Example 1: Quantitative GWAS
Meta-analysis

. Locke et al. gathered data from 125 cohorts!

- A meta-analysis is a statistical analysis that combines the results of
multiple scientific studies on the same question.

. It works on GWAS results, not requiring original genotype-phenotype
data.

- While no-one has access to all original genotype-phenotype data,
everyone can access the meta-analysed GWAS results as they are
(often) publicly available.



GWAS output

Summary statistics

variant

1:69487:G:A

1:69569:T:C

minor_allele
A
C

1:139853:C:T T

1:692794:CA.C C

1:693731:A:G G

1:707522:G:.C C

1:717587:G:A A

1:723329:AT T

minor_AF

2,15E+00
1,36E+01

2,13E+00

1,13E+04

1,17E+04

9,87E+03

1,58E+03

2,01E+02

Variant identifier “chr:pos:ref:alt”, where "ref” is aligned to the
forward strand of GRCh37 and "alt” is the effect allele.

low_confidence n_complete_sa

_variant
TRUE
TRUE

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

mples

23483
23483

23483

23483

23483

23483

23483

23483

AC

1,01E+05
6,38E+05

1,00E+05

5,33E+08

5,48E+08

4,64E+08

7,40E+07

9,43E+06

ytx

-9,18E+04
-2,01E+05

-9,13E+04

-1,69E+06

-1,79E+05

3,58E+06

2,33E+06

-8,32E+05

beta

-8,33E+04
-2,99E+04

-8,28E+04

-2,59E+02

1,89E+02

1,24E+03

4,34E+03

-1,03E+04

se

9,97E+04
4,10E+04

9,97E+04

1,60E+03

1,53E+03

1,71E+03

4,10E+03

1,11E+04

tstat

-8,35E+04
-7,29E+04

-8,30E+04

-1,62E+04

1,24E+04

7,22E+04

1,06E+05

-9,34E+04

pval

4,04E+04
4,66E+04

4,06E+04
8,71E+04
9,02E+04
4,70E+04
2,90E+04

3,50E+04

A
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Example 2: Disease GWAS

Migraine

102,000 cases and 771,000 controls
25 cohorts (meta-analysis)
123 genomic regions

38 susceptibility loci
Gormely et al. 2016

50 LRP1/STAT6/SDR9C7
.
® Known loci
New loci
.
401 promre i
©
.
! .
[
4
S 30 :
5] TRPMS/HJURP FHL5/UFL1 E
H il
3 « Near TSPAN2/INGF $ :
£
> i A‘1EF2D I PHACTR1 e
9 204 s SLC24A3
ARMS2/HTRA1
I s . HEY2/NCOA7 Near FGF6
3 . xonks®  C7ort10 PLCE1
* Near ADAMTSL4/ECM1 o Near TGFBR2 ' . I . MRvI1 i Near WSCD1/NLRP1
' Near GPR149 Near GJATs Hpse2 YAP1 % Near ZCCHC14 Near JAG1
10 - s Near REST/SPINK2 i . NRP1 /GSF9B| T MEEts EMaLAON
1 . RNF21
=1P31..1'| CARF i . Near NOTCH4 | Near DOCK4/IMMP2L i AI/IPPED2‘ Near ITPK1 - 213 ; Near MED14/USP9X
ek 1l o U : . ol Fisii 2 1L R e g
o udalopitl & Iapt bl | TR I IR TR
O_
9 12 183 14 15 16 17 18 19 20 2122 X

2
Chromosome

Haukatangas et al 2022




—log,,(P)

Example 2: Disease GWAS

Migraine, zoom-in regions

2 of the regions w. genes that are

target of molecular therapies.

rs1003194
*

!

f2

0.8
0.6
0.4
0.2

- 100

- 80

PDE3B —

< CALCA CALCB—
— C.)LP2F1' 1

INSC —

T

T
15 15.2
Position on chr11 (Mb)

T T
14.8 15.4

(q/no) eres uoneulquioosy

—log,,(P)

Haukatangas et al 2022

rs6795209

# 100

4 80

(q/no) eres uoneuIquIoosy

HTR1F - — CGGBP1
ZNF6_54 -
Caor.f;?B -
T I T T T T T
87.9 88 88.1 88.2 88.3 88.4 88.5

Position on chr3 (Mb)

Could other hits potentially become promising candidates for drug therapies?



Example 2: Disease GWAS
Migraine, OR

Effect sizes of migraine risk alleles (OR) 7 E%m
- MA: migraine with aura ots] |
- MO: migraine without aura
2010 wppeer
* |s the biology of different migraine 5; E L‘H :sm
subtypes same/different? < 0.05- Tre—p
« Could GWAS help finding better 5
treatments? ST | """"" N
* Could the same allele that reduces the | | | | |
risk of one disease increase the risk of 0 0'?059 {Om"r;:g o1 020

some other disorder?



Ethical aspects
Considerations for genetic data AN Q

r—
C J

Access: Who can access genetic data (e.g., individuals, researchers,
medical professionals)?

Information to Return: Should individuals/relatives receive actionable
health risks, sensitive traits (e.g., 1Q), or unexpected ancestry findings?

Gene Editing: Is it ethical for curing diseases, preventing severe
mutations, or designing favourable traits?

Data Responsibility: Genetic data contain deeply personal information and
must be handled with care, requiring clear agreements on usage and
purpose.



GWAS overview

GWAS types

Genotypic data:
- microarrays
- WGS
- WES

GWAS (genetic +
phenotypic data) vs.
meta-analysis (study
cohorts)

a Data collection b Genotyping € Quality control
. . ; : . . E /::African ~Your data A
seoseOBDOLOeLY §.
> 19000000000 — | =
e ° ® g ? .
o e @ ° . ape
o ° ° 5| "
g ~ o : ® g American —%, European—"+
= Principal component 1
d Imputation e Association testing
100
SNP1 | SNP2| SNP3 |SNP4 SNP5 SNP6
Person1 | G T G A A T
Person2 | G T C & T C "
Person3 | C A G C A C
Person4 | C A C C T (&

5 7 9 11 13151719 23
Chromosome

J

f Meta-analysis

https://doi.org/10.1038/s43586-021-00056-9

g Replication

Internal or external

h Post-GWAS analyses

|
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