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Data is not a piñata:

always LOOK at your data!

Exploratory analysis



Helps to:

understand data

Inform decisions for downstream analysis

Exploratory analysis
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1. Pre-filtering: Remove low-expressed genes or outliers

2. Transformation: Apply transformations to stabilize variance across samples.

3. Sample Distances & clustering: Calculate distances between samples (e.g., 

Euclidean distance)

4. Dimension reduction & clustering: see transcriptome-wide effects and 

sample relationships

Exploratory analysis steps
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Exploratory analysis – pre-filtering
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Identify outliers: 
using Cook’s distance

Remove low-expressed genes:
improve visualisations and 
save memory



Exploratory analysis - transformation
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Choose Distribution model that best fits the data

- if data fits negative binomial distribution, use DESeq2 or EdgeR

- If data fits something else (e.g., Poisson), use limma



• Poisson distribution assumes mean == 
variance → count distributions are 
overdispersed

• Negative binomial distribution accounts 
for overdispersion
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Exploratory analysis - transformation

RNAseq counts usually fit Poisson or 
Negative Binomial distribution:



Exploratory analysis - transformation
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raw counts is NOT IDEAL for 

clustering and visualisation

Transform to make it NICER to 

look at

log2(norm counts +1)



Genes with large mean counts distort sample 

relationship in low dimensional space

Data transformation equalizes the contribution to 

variance between high and low-expressed genes:
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log2(normalized counts + 1)

Add pseudocount because 
log2(0) = Inf

Log2-
transformation

log2(norm counts +1)

Lowly expressed genes

Highly expressed genes

Exploratory analysis - transformation



log2(norm.counts + 1) fixes the issue of the genes with high expression (and variance), BUT 
introduces noise (variance) for lowly expressed genes.
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Exploratory analysis - transformation



• Regularized logarithm (rlog) and variance stabilizing transformation (vst) remove the 
dependence of the variance on the expression mean

• For genes with low counts, values are shrunken towards the gene average across all samples

rank(mean)
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Exploratory analysis - transformation
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DO NOT use TRANSFORMED DATA 

(log2, vst, rlog) 

for Differential Expression Analysis

Exploratory analysis - transformation



Exploratory analysis - Dimension reduction
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Use to visualize transcriptome-wide effects and sample relationships

Sources of variation
Desired:        Variance of variable of interest
Undesired:   Confounding variable variances, Technical & Batch effects

Dimension reduction methods
PCA, MDS, t-SNE, UMAP

 Use transformed data here



Principal Component Analysis

• Visualize variation dataset of high dimensionality

• Number of genes equals number of dimensions (d)

• We can only interpret 2 or 3 dimensions

Gene Norm Sample A Norm Sample B n = 100

EF2A 1145.39 1176.62 …

ACBD1 16.92 16.88 …

d = 20000 … … …

x

y

z

15

Exploratory analysis – PCA



Variation of genes is collapsed into Principal Components (PCs)

GeneB Expression

GeneA Expression

Little variation

Highly variable
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Exploratory analysis – PCA



Variation of genes is collapsed into Principal Components (PCs)

PC1 - Most variance
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GeneB Expression

GeneA Expression

Little variation

Highly variable
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Exploratory analysis – PCA



Variation of genes is collapsed into Principal Components (PCs)

PC1 - Most variance
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Exploratory analysis – PCA

GeneB Expression

GeneA Expression

Little variation

Highly variable
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Variation of genes is collapsed into Principal Components (PCs)
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GeneB Expression

GeneA Expression

Little variation

Highly variable

Exploratory analysis – PCA

PC1 - Most variance

GeneA
G
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eB

Minimize residuals
(squared distance)
“the shorter the better”

Maximize variance
(Squared distance)
 “the longer the better”



Variation of genes is collapsed into Principal Components (PCs)

PC2 - second most variance
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GeneB Expression

GeneA Expression

Little variation

Highly variable
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Exploratory analysis – PCA



Variation of genes is collapsed into Principal Components (PCs)

PC2 - second most variance
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GeneB Expression

GeneA Expression

Little variation

Highly variable
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Exploratory analysis – PCA



Samples with similar gene expression 
related to Principal Components will be 
together

First Principal Components contain 
most variation: Usually PC1-PC4 are 
used

We need metadata to understand the 
source of variation, both biological and 
technical.
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Exploratory analysis – PCA



metadata: colData()
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Exploratory analysis – PCA
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Exploratory analysis – PCA

metadata: colData()
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Exploratory analysis – PCA

PC1

PC
2

metadata: colData()
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Exploratory analysis – PCA

PC
2

metadata: colData()



Exploratory analysis - clustering
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1. Create a pairwise matrix for samples:
- Euclidean Distance
- Spearman Correlation

2. Apply a clustering approach to the 
distance matrix:
- hclust
- kmeans

 Use transformed counts
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Exploratory analysis – Clustering

3. Visualise as heatmap + dendrogram
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Exploratory analysis – Clustering

Dendrogram summarizes 
which samples are more 
similar
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Exploratory analysis – Clustering

Heatmap shows pairwise 
distance or correlation as 
a color



Principal Component Analysis (PCA)

Dimension reduction, clustering and heatmaps of transformed counts help data 

exploration before further analysis: use these tools together to understand your data. 

P
ri

nc
ip

al
 S

am
p

le
 d

is
ta

n
ce

s
rl

o
g 

tr
an

sf
o

rm
at

io
n

Sample distances based on rlog transformation
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Exploratory analysis – Summary

31



An example of when something is not quite right…
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Exploratory analysis – Summary



Let’s Do Some Exploratory Analysis:

Notebook:
• 06_exploratory_analysis.Rmd
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Exploratory analysis
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